Category Archives: innovation

Perception of Value & Today’s Cryptocurrency “Crash”

Artist’s rendering of Bitcoin. THERE ARE NO ACTUAL COINS THAT LOOK LIKE THIS. Don’t ever let anyone sell you one.

Today, many cryptocurrencies lost ~35-50% of their value. Reddit even posted contact information for the National Suicide Prevention Hotline in /r/cryptocurrency, knowing how emotional investors were bound to be today. Bitcoin, which was nearly $20K in mid-December and has been hovering near $14K this past week, dropped nearly $4K and almost sunk below the $10K milestone. I usually track the price of Bitcoin at http://bitcointicker.co, which can show the posted prices from several exchanges (web locations where people go to buy and sell, like Ebay). There are hundreds of cryptocurrencies and many of them dropped in value today.

Why did the prices drop so much on Tuesday? Here are some likely influences:

Market prices are usually driven by supply and demand — for example, if there aren’t that many lobsters available in a particular area at a particular time, and you go to a restaurant hoping to order one — you’ll pay a premium. But that price is also influenced by the quality of the product, the image of the product, which influences your perception of its value. Quality reflects how well something satisfies stated and implied needs or expectations.

Value, however, is quality relative to price, and influenced by image. And people are not always rational: they’ll pay a premium for image, even if the value of a product isn’t particularly high. Just think of all the Macs on display at schools, coffee shops, and airports. Price is related to value… usually, price goes up as value goes up.

Where’s the value of cryptocurrency? A Bitcoin does not, on its own, have any inherent value — just like a dollar or a Euro (a “fiat currency”). But the prospect of an asset that will increase in perceived value — where you can buy low, hold (sometimes just for a few days), and sell high because there are lots of people willing to buy it from you — will have perceived value. Hundreds of early adopters — or “Bitcoin millionaires” — are getting people excited about the prospect of making small investments and reaping huge rewards. That this has happened so recently lends a mystique to ownership of cryptocurrencies and Altcoins (or “alternatives to Bitcoin,” like Ether) in addition to the novelty.

Value is attributed to things by people, and cryptocurrencies are no exception. The quality of the currency itself, and the technical solidity of the platform upon which one is based, isn’t really tied to the cryptocurrency price right now — although this will probably change as knowledge and awareness increases.

Is this the end of Bitcoin? That’s doubtful — there are too many innovators who insist on exploring the technological landscape of cryptocurrencies and blockchain technology, and lots of investors willing to fund them. In the meantime, there are unlikely benefits: because cryptocurrencies are not yet mainstream, a “crypto crash” is not as likely to ripple through the whole economy (no pun intended) like the subprime mortgage crisis of 2008. But if you do decide to buy cryptocurrency, don’t invest any more than you can afford to lose.

Blockchain and Quality

Quality is all about satisfying stated and implied needs –now, or in the future. When we envision and design high-quality products and services for the future, that’s innovation. One of the most hyped innovations of 2017 was blockchain, which has the potential to transform business models and the way quality is managed. The purpose of this article is to explain this relationship in a simple way.

Blockchain is the innovative technology supporting the Bitcoin cryptocurrency. Bitcoin gained tremendous traction in 2017, starting at just over $1,000 in January and reaching nearly $20,000 by the end of the year.  It increased in value so much over this time that it’s been compared to the Dutch tulip market bubble of the 1630s.  After tulips were imported into Holland from Turkey, an alteration to the solid colors of the tulips caused the appearance of “flames” on the petals. This made people believe that the tulip bulbs held extreme value, and so many people traded their land and their savings to invest in what they felt was a “sure thing” – to lose everything not long after, when the market corrected itself.

Bitcoin (USD) prices, 1/1/17-12/13/17. Generated using https://www.coindesk.com/price/.

Bitcoin (USD) prices, 1/1/17-12/13/17. Generated using https://www.coindesk.com/price/.

The blockchain technology that supports Bitcoin is, at its core, a database. It’s a special kind of database, but no more magical, really – and easier to contextualize if you think about innovations in database technology over the past two decades.

Databases can be roughly classified into these categories:

  • Relational databases (Oracle, MySQL, PostgreSQL, Sybase): When you can organize your data in terms of tables, fields, and relationships between those entities, a relational database is often appropriate. For example, your customer data might be kept in the “people” table with fields like address, state, or gender. Each record in the people table might have a type – employee, partner, or customer. Although records can be changed, it’s easy to accidentally input bad data, and it’s also easy to accidentally generate duplicate records. Scaling a relational database can also be rather tricky.
  • Non-relational (NoSQL) databases (MongoDB, Cassandra, Redis): If most of your data comes in large blobs and you don’t want to split it up into fields and tables, these databases are useful. MongoDB is great for collections of documents, such as web pages, log data, or tweets. Cassandra works well for analytics applications. Sensor data and other data types that change frequently or need to be held in active memory (for example, in key-value stores) are handled well by databases like Redis. NoSQL databases are easier to scale than relational databases.
  • Other databases and data stores with special properties: Some databases are so unique they don’t feel or act like databases. Solr, for example, is traditionally used when you have to provide search functionality over a store of documents. Hadoop is a distributed file system, so it functions somewhat like a database even though it’s not one. Graph databases are designed for data stores where the relationships are the most important aspect, so they are gaining popularity for social networks. Large, institutional science projects often store their data in special binary files that have distinct formats, can be queried like databases, and in many ways act like databases – but they are not technically databases.

 

What Distinguishes Blockchain-based Databases from Ordinary Databases?

First, the blockchain is designed to handle transactions – it’s a digital ledger. So it’s not surprising that its first “successful” use cases are in the realm of cryptocurrency, where people engage in transactions with one another to exchange something of value.

Next, this database is immutable, meaning you can’t go back and change earlier records. Every time a new transaction occurs, a cryptographically sealed “snapshot” is taken of the entire database. When I first heard this, I was worried: so that means if we accidentally enter something incorrect into the database, it can never be changed, right? And its presence is memorialized forever? The answer to this question is: sort of. Thanks to “smart contracts”, we shouldn’t ever be in the situation where bad data gets entered into our blockchain-based system, because incoming data will be checked (by multiple agents) against the smart contract — and only allowed to join the blockchain database if it meets all the quality requirements specified by the contract. It’s like a fancy way to implement validation rules – with the added benefit of being totally traceable. Imagine how nice it would be to trace all the steps in the process that brought the fresh fruit into your kitchen – or any other product you use — just because all transactions in the production process were logged into a “supply blockchain.”

A blockchain database is also decentralized and distributed — you don’t just “buy a blockchain database” and install it at your company. Databases can be centralized, decentralized, or distributed. Most business databases in the past were centralized: there was one instance installed, and a database administrator (or team of them) ensured the performance and security of the database while everyone in the organization created and used applications that interacted with the data. Today, these databases are more commonly distributed: there’s not just one instance, but several – there is no central storage, but there may be storage on many computers, or over a network of connected computers (or “in the cloud”). 

Decentralized systems have many advantages – for example, nodes can join or leave the network at will. For example, you can create a web site or take it off the internet whenever you want, if you own and control it. In decentralized systems, there is no single point of control. If a business wants to implement blockchain but also wants to control all the nodes, that should be a big red flag. By its nature, blockchain is decentralized just like the internet itself.

Finally, blockchain is transparent. Any of the participants who own nodes can see all the transactions — so there should be fewer opportunities for fraud. This doesn’t mean that there isn’t opportunity for danger, though.

 

Why is Blockchain Potentially Useful for Quality Assurance?

In addition to enhancing provenance and traceability, one of the biggest envisioned applications of blockchain databases is to support machine to machine transactions. As intelligent agents grow in complexity and are trusted to handle more tasks, and as the Internet of Things (IoT) expands, there needs to be a high-quality record of how those objects and agents interact with other objects and agents – and with humans. Blockchain could also be used to support new business models like decentralized energy markets, where you can consume energy from the local power plant, but also potentially generate your own and contribute the excess energy to your local community for a fee. It could potentially transform middleware as well, which is software that allows different software systems to communicate with one another. (A long time ago, someone told me that it’s like “email for applications” – they can send messages to one another so they know how to react, for example, when a company receives an order and several systems need to be alerted that the order has arrived.)

In principle, transactions logged to a blockchain make it impossible to defraud participants in the process, and impossible to manipulate records after they are recorded. They are self-auditing and fully traceable. Blockchain won’t make quality assurance, tracking, or auditing EASY, but you should expect it to make the business landscape different – new business models will be possible, and it will be possible to entrust intelligent agents with more tasks.  

Blockchain can help us ensure that stated and implied needs are met, and do it in such a way that the integrity of our data is assured simply by its presence. But we’re not there yet. Developers still need to implement simple, demonstrable use cases to make it easier for managers and executives to map these technologies onto specific business needs. In addition, blockchain is slow compared to relational database systems, so this needs to be addressed as well before widespread adoption.

 

Read more in our December 2017 SQP article.

Quality 4.0 and Digital Transformation

The fourth industrial revolution is characterized by intelligence: smart, hyperconnected agents deployed in environments where humans and machines cooperate to achieved shared goals — and using data to generate value. Quality 4.0 is the name we give to the pursuit of performance excellence in the midst of technological progress, which are sometimes referred to as digital transformation.

The characteristics of Quality 4.0 were first described in the 2015 American Society for Quality (ASQ) Future of Quality Report. This study aimed to uncover the key issues related to quality that could be expected to evolve over the next 5 to 10 years. In general, the analysts expected that the new reality would focus not so much on individual interests, but on the health and viability of the entire industrial ecosystem.

Some of the insights from the 2015 ASQ Future of Quality Report were:

  • A shifting emphasis from efficiency and effectiveness, to continuous learning and adaptability
  • Shifting seams and transitions (boundaries within and between organizations, and how information is shared between the different areas)
  • Supply chain omniscience (being able to assess the status of any element of a global supply chain in real time)
  • Managing data over the lifetime of the data rather than the organization collecting it

The World Economic Forum (WEF) has also been keenly interested in these changes for the past decade. In 2015, they launched a Digital Transformation Initiative (DTI) to coordinate research to help anticipate the impacts of these changes on business and society. They recognize that we’ve been actively experiencing digital transformation since the emergence of digital computing in the 1950’s:

 

Because the cost of enabling technologies has decreased so much over the past decade, it’s now possible for organizations to begin making them part of their digital strategy. In general, digital transformation reveals that the nature of “organization” is changing, and the nature of “customer” is changing as well. Organizations will no longer be defined solely by their employees and business partners, but also by the customers who participate – without even explicitly being aware of their integral involvement — in ongoing dialogues that shape the evolution of product lines and new services.

New business models will not necessarily rely on ownership, consumption, or centralized production of products or provision of services. The value-based approach will accentuate the importance of trust, transparency, and security, and new technologies (like blockchain) will help us implement and deploy systems to support those changes.

 

What is Quality 4.0?

Image Credit: Doug Buckley of http://hyperactive.to

My first post of the year addresses an idea that’s just starting to gain traction – one you’ll hear a lot more about from me in 2018: Quality 4.0.  It’s not a fad or trend, but a reminder that the business environment is changing, and that performance excellence in the future will depend on how well you adapt, change, and transform in response. Although we started building community around this concept at the ASQ Quality 4.0 Summit on Disruption, Innovation, and Change, held in November 2017 in Dallas, the truly revolutionary work is yet to come.

The term “Quality 4.0” comes from “Industry 4.0” – referring to the “fourth industrial revolution” – originally addressed at the Hannover (Germany) Fair in 2011. That meeting emphasized the increasing intelligence and interconnectedness in “smart” manufacturing systems and reflected on the newest technological innovations in historical context.

In the first industrial revolution (late 1700’s), steam and water power made it possible for production facilities to scale up and expanded the potential locations for production. By the late 1800’s, the discovery of electricity and development of associated infrastructure enabled the development of machines for mass production. In the US, the expansion of railways made it easier to obtain supplies and deliver finished goods. The availability of power also sparked a renaissance in computing, and digital computing emerged from its analog ancestor. The third industrial revolution came at the end of the 1960’s, with the invention of the Programmable Logic Controller (PLC). This made it possible to automate processes like filling and reloading tanks of liquids, turning engines on and off, and controlling sequences of events based on changing environmental conditions.

Although the growth and expansion of the internet accelerated innovation in the late 1990’s and 2000’s, we are just now poised for another industrial revolution. What’s changing?

  • Production & Availability of Information: More information is available because people and devices are producing it at greater rates than ever before. Falling costs of enabling technologies like sensors and actuators are catalyzing innovation in these areas.
  • Connectivity: In many cases, and from many locations, that information is instantly accessible over the internet. Improved network infrastructure is expanding the extent of connectivity, making it more widely available and more robust. (And unlike the 80’s and 90’s, there are far fewer communications protocols that are commonly encountered so it’s a lot easier to get one device to talk to another device on your network.)
  • Intelligent Processing: Affordable computing capabilities (and computing power!) are available to process that information so it can be incorporated into decision making. High-performance software libraries for advanced processing and visualization of data are easy to find, and easy to use. (In the past, we had to write our own… now we can use open-source solutions that are battle tested.
  • New Modes of Interaction: The way in which we can acquire and interact with information are also changing, in particular through new interfaces like Augmented Reality (AR) and Virtual Reality (VR), which expand possibilities for training and navigating a hybrid physical-digital environment with greater ease.
  • New Modes of Production: 3D printing, nanotechnology, and gene editing (CRISPR) are poised to change the nature and means of production in several industries. Technologies for enhancing human performance (e.g. exoskeletons, brain-computer interfaces, and even autonomous vehicles) will also open up new mechanisms for innovation in production. (Roco & Bainbridge (2002) describe many of these, and their prescience is remarkable.) New technologies like blockchain have the potential to change the nature of production as well, by challenging ingrained perceptions of trust, control, consensus, and value.

If the first industrial revolution was characterized by steam-powered machines, the second was characterized by electricity and assembly lines. Innovations in computing and industrial automation defined the third industrial revolution.  The fourth industrial revolution is one of intelligence: smart, hyperconnected cyber-physical systems in environments where humans and machines cooperate to achieved shared goals, and use data to generate value.

These enabling technologies originate in the physical, digital, and biological domains, and include the following:

  • Information
    • Affordable Sensors and Actuators
    • Big Data infrastructure (e.g. MapReduce, Hadoop, NoSQL databases)
  • Connectivity
    • 5G Networks
    • IPv6 Addresses (which expand the number of devices that can be put online)
    • Internet of Things (IoT)
    • Cloud Computing
  • Processing
    • Predictive Analytics
    • Artificial Intelligence
    • Machine Learning (incl. Deep Learning)
    • Data Science
  • Interaction
    • Augmented Reality (AR)
    • Mixed Reality (MR)
    • Virtual Reality (VR)
    • Diminished Reality (DR)
  • Construction
    • 3D Printing
    • Additive Manufacturing
    • Smart Materials
    • Nanotechnology
    • Gene Editing
    • Automated (Software) Code Generation
    • Robotic Process Automation (RPA)
    • Blockchain

Today’s quality profession was born during the middle of the second industrial revolution, when methods were needed to ensure that assembly lines ran smoothly – that they produced artifacts to specifications, that the workers knew how to engage in the process, and that costs were controlled. As industrial production matured, those methods grew to encompass the design of processes which were built to produce to specifications. In the 1980’s and 1990’s, organizations in the US started to recognize the importance of human capabilities and active engagement in quality as essential, and TQM, Lean, and Six Sigma gained in popularity. 

How will these methods evolve in an adaptive, intelligent environment? The question is largely still open, and that’s the essence of Quality 4.0.

Roco, M. C., & Bainbridge, W. S. (2002). Converging technologies for improving human performance: Integrating from the nanoscale. Journal of nanoparticle research4(4), 281-295. (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.465.7221&rep=rep1&type=pdf)

How to Assess the Quality of a Chatbot

Image Credit: Doug Buckley of http://hyperactive.to

Quality is the “totality of characteristics of an entity that bear upon its ability to meet stated and implied needs.” (ISO 9001:2015, p.3.1.5) Quality assurance is the practice of assessing whether a particular product or service has the characteristics to meet needs, and through continuous improvement efforts, we use data to tell us whether or not we are adjusting those characteristics to more effectively meet the needs of our stakeholders.

But what if the entity is a chatbot?

In June 2017, we published a paper that explored that question. We mined the academic and industry literature to determine 1) what quality attributes have been used by others to determine chatbot quality, we 2) organized them according to the efficiency, effectiveness, and satisfaction (using guidance from the ISO 9241 definition of usability), and 3) we explored the utility of Saaty’s Analytic Hierarchy Process (AHP) to help organizations select between one or more versions of chatbots based on quality considerations. (It’s sort of like A/B testing for chatbots.)

“There are many ways for practitioners to apply the material in this article:

  • The quality attributes in Table 1 can be used as a checklist for a chatbot implementation team to make sure they have addressed key issues.
  • Two or more conversational systems can be compared by selecting the most significant quality attributes.
  • Systems can be compared at two points in time to see if quality has improved, which may be particularly useful for adaptive systems that learn as they as exposed to additional participants and topics.”

What Protests and Revolutions Reveal About Innovation

The following book review will appear in an issue of the Quality Management Journal later this year:

The End of Protest: A New Playbook for Revolution.   2016.  Micah White.  Toronto, Ontario, Canada. Alfred A. Knopf Publishing.  317 pages.

You may wonder why I’m reviewing a book written by the creator of the Occupy movement for an audience of academics and practitioners who care about quality and continuous improvement in organizations, many of which are trying to not only sustain themselves but also (in many cases) to make a profit. The answer is simple: by understanding how modern social movements are catalyzed by decentralized (and often autonomous) interactive media, we will be better able to achieve some goals we are very familiar with. These include 1) capturing the rapidly changing “Voice of the Customer” and, in particular, gaining access to its silent or hidden aspects, 2) promoting deep engagement, not just in work but in the human spirit, and 3) gaining insights into how innovation can be catalyzed and sustained in a truly democratic organization.

This book is packed with meticulously researched cases, and deeply reflective analysis. As a result, is not an easy read, but experiencing its modern insights in terms of the historical context it presents is highly rewarding. Organized into three sections, it starts by describing the events leading up to the Occupy movement, the experience of being a part of it, and why the author feels Occupy fell short of its objectives. The second section covers several examples of protests, from ancient history to modern times, and extracts the most important strategic insight from each event. Next, a unified theory of revolution is presented that reconciles the unexpected, the emotional, and the systematic aspects of large-scale change.

The third section speaks directly to innovation. Some of the book’s most powerful messages, the principles of revolution, are presented in Chapter 14. “Understanding the principles behind revolution,” this chapter begins, “allows for unending tactical innovation that shifts the paradigms of activism, creates new forms of protest, and gives the people a sudden power over their rulers.” If we consider that we are often “ruled” by the status quo, then these principles provide insight into how we can break free: short sprints, breaking patterns, emphasizing spirit, presenting constraints, breaking scripts, transposing known tactics to new environmental contexts, and proposing ideas from the edge. The end result is a masterful work that describes how to hear, and mobilize, the collective will.

 

Reviewed by

Dr. Nicole M. Radziwill

 

The Value of Defining Context

Image Credit: Doug Buckley of http://hyperactive.to

Image Credit: Doug Buckley of http://hyperactive.to

The most important stage of problem-solving in organizations is often one of the earliest: getting everyone on the same page by defining the concepts, processes, and desired outcomes that are central to understanding the problem and formulating a solution. (“Everyone” can be the individuals on a project team, or the individuals that contribute actions to a process, or both.) Too often, we assume that the others around us see and experience the world the same way we do. In many cases, our assessments are not too far apart, which is how most people can get away with making this assumption on a regular basis.

In fact, some people experience things so differently that they don’t even “picture” anything in their minds. Can you believe it?

I first realized this divergence in the work context a few years ago, when a colleague and I were advising a project at a local social services office. We asked our students to document the process that was being used to process claims. There were nearly ten people who were part of this claims-processing activity, and our students interviewed all of them, discovering that each person had a remarkably different idea about the process that they were all engaged in! No wonder the claims processing time was nearly two months long.

We helped them all — literally — get onto the same page, and once they all had the same mental map of the process, time-in-system for each claim dropped to 10 days. (This led us to the quantum-esque conclusion that there is no process until it is observed.)

Today, I read about how mathematician Keith Devlin revolutionized the process of intelligence gathering after 9/11 using this same approach… by going back to one of the first principles he learned in his academic training:

So what had I done? Nothing really — from my perspective. My task was to find a way of analyzing how context influences data analysis and reasoning in highly complex domains involving military, political, and social contexts. I took the oh-so-obvious (to me) first step. I need to write down as precise a mathematical definition as possible of what a context is. It took me a couple of days…I can’t say I was totally satisfied with it…but it was the best I could do, and it did at least give me a firm base on which to start to develop some rudimentary mathematical ideas.

The fairly large group of really smart academics, defense contractors, and senior DoD personnel spent the entire hour of my allotted time discussing that one definition. The discussion brought out that all the different experts had a different conception of what a context is — a recipe for disaster.

What I had given them was, first, I asked the question “What is a context?” Since each person in the room besides me had a good working concept of context — different ones, as I just noted — they never thought to write down a formal definition. It was not part of what they did. And second, by presenting them with a formal definition, I gave them a common reference point from which they could compare and contrast their own notions. There we had the beginnings of disaster avoidance.

Getting people to very precisely understand the definitions, concepts, processes, and desired outcomes that are central to a problem might take some time and effort, but it is always extremely valuable.

When you face a situation like this in mathematics, you spend a lot of time going back to the basics. You ask questions like, “What do these words mean in this context?” and, “What obvious attempts have already been ruled out, and why?” More deeply, you’d ask, “Why are these particular open questions important?” and, “Where do they see this line of inquiry leading?”

(You can read the full article about Devlin, and more important lessons from mathematical thinking, Here.)

View story at Medium.com

« Older Entries Recent Entries »