

STATISTICS
(T H E E A S I E R W A Y)

WITH R

Nicole M. Radziwill

STATISTICS (THE EASIER WAY) WITH R. Copyright 2015 by Nicole M. Radziwill.

2

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0

International License: http://creativecommons.org/licenses/by-nc-sa/4.0/

ISBN-13: 978-0-692-33942-8

ISBN-10: 0692339426

Cover Design: Morgan C. Benton

Indexing: Athena Benton

Publisher: Lapis Lucera, San Francisco, California.

For information on distribution, bulk sales, or classroom adoptions please contact the

author directly via email (nicole.radziwill@gmail.com) with the subject line "251 BULK

ORDER" or on Twitter at @nicoleradziwill

For a free PDF eBook, please email a copy of your receipt (and preferably, a picture of you

reading your book in a beautiful location!) to the author. You will receive the PDF eBook by

email AND your picture might even show up on the http://qualityandinnovation.com blog.

XKCD comics by Randal Munroe (http://xkcd.com) are included under the terms of the

Creative Commons Attribution-NonCommercial 2.5 License. (More information is provided

at https://xkcd.com/license.html).

The information contained within this book is distributed without warranty. While the

author and publisher have taken every precaution to assure quality and correctness, they

assume no responsibility or liability for errors, omissions, or damages caused directly or

indirectly by the information contained within it.

https://www.myidentifiers.com/myaccount_manageisbns_titlereg?isbn=978-0-692-33942-8&icon_type=assigned
https://www.myidentifiers.com/myaccount_manageisbns_titlereg?isbn=978-0-692-33942-8&icon_type=assigned

 3

Part 1 of "Significant" - an XKCD cartoon by Randal Munroe

(https://xkcd.com/882/)

4

 5

About the Author

Nicole M. Radziwill

As of Fall 2015, Nicole is an Associate Professor in the Department of Integrated Science and

Technology (ISAT) at James Madison University (JMU) in Harrisonburg, Virginia, where she

has worked since 2009. Prior to 2009, she spent nearly a decade hanging out with brilliant

astronomers and engineers at the National Radio Astronomy Observatory (NRAO) working

on software and systems to make giant radio telescopes work. Her teaching interests

include quality consciousness, quality informatics, innovation, process improvement,

predictive analytics, intelligent systems, industrial simulation, technology management, and

applied statistics. She has been active in the American Society for Quality (ASQ) since the

late 1990's, and in addition to serving as one of ASQ's official "Influential Voices" bloggers at

http://qualityandinnovation.com, she was recognized by Quality Progress (ASQ's flagship

publication) as one of the 40 New Voices of Quality in 2011.

Nicole is certified by ASQ as Six Sigma Black Belt (CSSBB) #11952 and Manager of Quality

and Organizational Excellence (CMQ/OE) #9583. She was Chair of the ASQ Software

Division from 2009 to 2011, and served as a national examiner for the Malcolm Baldrige

National Quality Award (MBNQA) in 2009 and 2010 appointed by the National Institute for

Standards and Technology (NIST). She has a PhD in Technology Management and Quality

Systems from Indiana State University, an MBA from Regis University in Denver, and a BS in

Meteorology from Penn State.

Her research uses data science to explore new ways to think about quality systems and

innovation, with a focus on emergent environments for living and learning, leveraging

alternative economies and gift cultures such as Burning Man.

http://www.isat.jmu.edu/
http://www.isat.jmu.edu/
http://www.jmu.edu/
http://www.asq.org/
http://asq.org/certification/manager-of-quality/
http://asq.org/certification/manager-of-quality/
http://www.asq.org/software
http://www.asq.org/software
http://www.nist.gov/baldrige/
http://www.nist.gov/baldrige/
http://www.indstate.edu/consortphd
http://www.indstate.edu/consortphd

6

 7

Part 2 of "Significant" - an XKCD cartoon by Randal Munroe

(https://xkcd.com/882/)

8

 9

Brief Contents

PREFACE .. i

Section 1 BASIC CONCEPTS ... 1

Section 2 CHARTS, GRAPHS, AND PLOTS 83

Section 3 FOUNDATIONS FOR YOUR RESEARCH 161

Section 4 CONFIDENCE INTERVALS AND STANDARD ERROR 239

Section 5 STATISTICAL INFERENCE .. 297

Section 6 REGRESSION AND INFERENCES ON REGRESSION 427

APPENDICES .. 463

INDEX .. 497

10

 11

Part 3 of "Significant" - an XKCD cartoon by Randal Munroe

(https://xkcd.com/882/)

12

 13

Table of Contents

Section 1 BASIC CONCEPTS .. 1

1.1 Introduction to R .. 3

1.2 Why I Love R ... 9

1.3 Variables and the Case Format .. 12

1.4 Central Tendency and Variability ... 24

1.5 Descriptive Statistics .. 34

1.6 More Ways to Acquire and Inspect Data ... 41

1.7 PDFs and CDFs .. 55

1.8 Using the Normal Model .. 60

Section 2 CHARTS, GRAPHS, AND PLOTS .. 82

2.1 Bar Charts ... 84

2.2 Histograms ... 91

2.3 Segmented Bar Charts ... 99

2.4 Box Plots ... 105

2.5 Comparative Box Plots ... 113

2.6 Pie and Waffle Charts ... 118

2.7 Pareto Charts ... 125

2.8 QQ Plots and Tests for Normality .. 132

2.9 Scatterplots .. 139

2.10 Contingency Tables .. 151

Section 3 FOUNDATIONS FOR YOUR RESEARCH ... 160

3.1 Randomness and Sampling Strategies ... 162

3.2 Experiments vs. Observational Studies .. 173

14

3.3 Dr. R's 12 Steps .. 181

3.4 The Art of Developing Research Questions ... 185

3.5 Power Analysis to Determine Sample Size ... 196

3.6 Sampling Distributions and The Central Limit Theorem 212

3.7 P-Values, Confidence Intervals, and Controversy 224

3.8 Sample Project Proposal: Tattoos .. 236

Section 4 CONFIDENCE INTERVALS AND STANDARD ERROR 238

4.1 One Mean .. 240

4.2 Two Means ... 247

4.3 Paired Means ... 255

4.4 One Proportion ... 262

4.5 Two Proportions .. 270

4.6 One Variance ... 279

4.7 Two Variances ... 283

4.8 Regression Slope & Intercept .. 287

Section 5 STATISTICAL INFERENCE ... 297

5.1 Which Approach Should I Use? ... 299

5.2 One Sample t-test ... 305

5.3 Two Sample t-test (Equal Variance) .. 317

5.4 Two Sample t-test (Unequal Variance) ... 332

5.5 Paired t-test .. 343

5.6 One Proportion z-test & Binomial Test ... 354

5.7 Two Proportion z-test ... 369

5.8 Chi-square Test of Independence ... 383

5.9 Chi-square Test for One Variance .. 396

5.10 F Test for Homogeneity of (Two) Variances... 406

5.11 One-way Analysis of Variance (ANOVA) .. 415

 15

Section 6 REGRESSION AND INFERENCES ON REGRESSION.............................. 427

6.1 Simple Linear Regression .. 428

6.2 Multiple Regression .. 442

6.3 Hypothesis Tests of Regression Coefficients ... 449

APPENDICES

A List of Variables Used in this Book ... 463

B Eyelid Tattoos: Things You Should Memorize .. 467

C Using R as a Lookup Table for Critical Values and P-Values 470

D Using Google as a Lookup Table for Critical Values and P-Values 475

E Oh No! Troubleshooting Tips ... 476

F Colors and Palettes in R ... 481

G Typing Hats and Bars Over Variables in MS Word 482

H The shadenorm.R function .. 484

I LaTeX Markup for All Equations in this Book ... 489

J Basic Probability ... 492

K Overview of Inference Tests ... 496

INDEX ... 497

16

 i

Preface

I've become so tired of reading statistics textbooks that feel like textbooks. Why can't

someone just write a book that makes me feel like I have a real live person sitting next to

me, who cares about me, who wants me to understand this stuff? Why can't someone

document some examples in R (my favorite statistical software package) that actually

include all of the steps I need to follow instead of leaving out one or two critical steps that

leave me tearfully troubleshooting for hours? Why can't someone write a cookbook that

provides just enough statistical theory and formulas so I can understand how the analytical

solutions match up with the solutions provided by the statistical software?

That's the kind of book I wanted to recommend for my students. But after years of

searching, and a couple more years of trying out books that didn't quite fit, I came to realize

that the ideal book I was looking for just didn't exist: if I wanted my students to have a

friendly, accessible, affordable, non-threatening textbook... I would have to write it for

them. Finally, I started hitting LaTeX and the word processor. I'll do it, I committed. It took

about three years to get to this point, but late is better than never (I hope).

SO... the purpose of this book is to help you analyze real data – quickly and easily, no fuss no

muss – using the R statistical software. Along the way, you’ll learn some of the most

important fundamentals of applied statistics, which will help you think more critically about

the story your data is telling. My style is to tell you only what I think you need to know to

quickly become productive. I’ll provide you with some background, some examples, and an

explanation of what each of the commands in R does (and the options you can provide to

those commands). I want to give you just enough theory so you know exactly what's going

on under the surface, and just enough practice so that you know how to gain insights from

your own data.

As a result, this book is NOT intended to be a substitute for a full-length text or course in

statistics! You won't learn how to solve homeworky-style problems. However, I've often

found that it's easier to get interested in how and why these methods work - and under

what conditions - after you've had some success using them, and maybe even working with

your own data.

ii

Most importantly, each chapter has been written so that you don't need to be a math or

statistics or programming ninja to be able to complete the exercises! Rather than trying to

impress you with my slick coding skills in R, I have purposefully chosen less elegant but

more instructive coding strategies, and I've attempted to show you ALL the lines of code for

EVERYTHING that is produced in this book. I have also been repetitive, on PURPOSE, so you

don't have to remember every single detail from previous chapters to get the job done in a

later chapter! I have piloted all the chapters in one or more of my classes, and students in

majors ranging from anthropology to business to science to technology have completed the

work and provided the feedback that's been used to clarify each chapter.

I wrote this book as the primary text for the undergraduate sophomores and juniors in my

introductory applied statistics courses. I was strongly motivated to do this for two reasons:

1) as silent activism against textbook publishers who charge $200+ a pop for very beautiful,

glossy statistics textbooks that all of my students are required to purchase, yet none of my

students actually read, and 2) to give my students just the essential information I think they

need to become confident and capable data analysts using the most essential statistics. (At

this point, the statistics textbooks tend to become a lot more interesting to everyone.)

To be clear, I have nothing against traditional textbooks themselves – or the authors who

have labored to create clear, engaging texts with tons of pretty pictures and armies of

practice problems. Actually, I admire the authors who spent so much time constructing their

vision of a clear, cogent presentation of a subject. (It's not hard for me to admire and

appreciate these contributions, since I myself have actually been a part of these teams of

authors who have written reasonably awesome, yet expensive, textbooks -- which

publishers are now making unconscionable bank with.) I just think traditional textbooks are

kind of outmoded and passé. I can find lots of pretty pictures and examples on the web, and

I’m not going to flatter myself by thinking that any more than one or two students work

practice problems beyond what I cover in class.

I thought it was a sin that my students should pay $200 for a paperweight with a lifetime of

just a semester and a resale value of less than 50% of the initial investment. I decided the

book that I would create would not be heavy with beautiful and elegant typesetting, or

stock photos of cheerful people working on statistical problems, or discussions that took the

 iii

standard tone of "I am the great textbook, here to confer to you my power and wisdom."

Textbooks never admit that some concepts are difficult, or why they're difficult. Textbooks

aren't conversational, and don't really provide moral support. Textbooks have to be

politically correct, which can preclude talking about really intense examples that students

usually remember... like whether smoking too much pot is related to lower test scores.

I figured that a textbook that cost only 15-20% of the "standard", and that actually had

some useful recipes that students could leverage for semester projects in other classes,

might have a little more lasting value and maybe even find a permanent home on my

students’ bookshelves. That’s my dream, at least.

Who This Book Is For

Although originally designed for my undergraduate statistics students, I think this book will

be useful to you if you are any of the following types of people:

 Undergraduate college students in the first semester of applied statistics who are

looking for a textbook that does not spend too much time on fluffy explanations of

concepts, but rather, presents information in a more direct and less mathematical-

ese way

 Professors who want a relaxed, informal book for their intro stats classes that won't

cost students $150-$250

 Graduate students who need to use statistics to plan and complete a thesis or

dissertation, but don't have that much background in it, and need help NOW

 Early to mid-career data scientists who don't have a PhD in statistics and don't want

one, but do want to get more familiar with R, with foundational concepts in

statistics, and/or learning how to tell better and more compelling data-driven

stories

iv

 Smart, business-savvy people who want to do more data analysis and business

analytics, but don’t know where to start and don’t want to invest hundreds or

thousands of dollars on statistical software!

 People who are studying for their Six Sigma Black Belt exam. As a Black Belt myself,

a lot of the understanding I've gained has come from the discipline of process

improvement, so my treatment of topics naturally tends to reflect what's important

for that exam.

 Middle school or high school students who want to collect some original data and

do cool science fair projects.

 High school students who are taking regular or AP Statistics classes, and need a little

extra help or information (or maybe you want to supplement the in-class instruction

you're getting with some understanding of how to analyze real data).

I do not assume that you are a programmer. I also do not assume that you are super smart

with either computers or statistics, only that you have the motivation to get some data

analysis done with R. More about R in the next section. (I won't assume you know things like

how important it is to coerce an object to another form if a certain algorithm won't work on

the object you have. That would be cruel.)

I do assume that you already have R installed on your machine, and that you are impatient

and just want to figure out how to do some useful stuff so you can start impressing your

boss, your teachers, or yourself.

I do assume that you have a positive attitude, and that you'd like to learn some statistics

and data analysis techniques that you can start using immediately. If you don't have a

positive attitude, you should probably not be reading this book. In fact, it's likely that you

shouldn't be doing statistics at all. You would be better served to go off and find some topic

or some activity that does spin up a positive attitude in you. Why? Because you will have

more fun. I wouldn't want you to do stats if it wasn't a little fun.

 v

This Book Uses R

All of the examples in this book use the R statistical software. You need to download and

install the software onto your own machine to be able to use it. Go to the R Project web site

at http://www.r-project.org and select the link to "Download R". It will ask you to pick a

"CRAN Mirror" so find a site that's geographically close to where you're sitting when you

want to install R. For example, I live in Virginia so I might choose a Maryland or Ohio site

rather than one in Argentina or Belgium. Data has to travel over geographic distances too,

so I want all those mysterious bits and bytes to have to travel the shortest possible distance

between where they live and MY laptop. That way, they will arrive as quickly as possible.

This book does not provide help installing R. Why? Simply because every time I have

attempted to install R it has been really, really easy, and I don't consider myself an expert at

installing anything on my computer. If you can't figure it out yourself, ask a friend (or if

you're older, a friend's computer-savvy kid).

Or, you can try to decipher what's in the official R Installation and Administration manual,

which can be found at http://cran.r-project.org/doc/manuals/R-admin.html.

How This Book Is Organized

It seems like every non-fiction book has a section in the front that talks about how the book

is organized, so I thought I'd be a conformist and do the same. I mean, sure, you could look

through the rest of the book to see how it's organized, but why do that when I can describe

it right here so you don't have to flip through the pages?

 Section 1 talks about basic concepts (like variable types, and loading data)

 Section 2 explains how to create charts, graphs, and plots that can help you tell the

story of your data through visualization

 Section 3 provides the framework for how to do a research project using basic

applied statistics, including fundamental aspects of theory, and also shows how to

structure the story of your data and your results (featuring "Dr. R's 12 Steps")

http://cran.r-project.org/doc/manuals/R-admin.html

vi

 Section 4 summarizes how to create confidence intervals for several common

scenarios, and recommends best approaches to handle the most challenging cases

 Section 5 contains step-by-step recipes for conducting statistical inference tests,

drawing conclusions, and interpreting your results

 Section 6 contains recipes for regression (which is just a fancy word for finding

relationships between variables), and

 The Appendices provide some helpful reference information.

Inside each section, there's lots of useful stuff, and lots of me rambling about it.

Conventions Used In This Book

Joy in Repetition

Although I have aimed to keep the text as simple and concise as possible, you may notice

that there is substantial repetition between sections, especially throughout Section 5:

Statistical Inference. That’s because I also plan to use this text as a reference for myself.

When I am doing an inference test, or even a confidence interval, I don't want to have to flip

back and forth between chapters to do things like remember what all those assumptions are

that I need to check. Or how to load the data. When I am doing a Pareto chart, I want to

quickly and easily reference all of the most important ways to change colors, line styles, and

common options. When I create pie charts, I want to be able to easily and quickly reference

all the most important options to the pie command. I don’t want to have to flip back and

forth between sections just because something was covered earlier in the book. I don't want

to pretend like I'm going to remember even the simplest syntaxes, because that's not easy

(and gets less and less easy as your age and number of children increase).

 vii

My Fonts

Most of the text is written in Calibri 11-point font because I think it’s pretty. Inline R code is

in 10-point Courier New, whereas chunks of code are 9-point Courier New. Why all the

variability? It's totally arbitrary. I just liked it that way, so I did it. Sometimes it looks good,

and sometimes it looks less than good. I'm good with that. Sometimes I violate every design

principle that exists by using 9-point font next to 8-point font with some 7-point font thrown

in below it. But I have a good reason: I want you to be able to see all the output from R

without it looking really horrible. You may think this is design heresy, but I call it practical

and page-saving.

My R Code

Code that you can type directly into R is written in 9-point Courier New, and indented half

an inch from the left margin, like this:

defect.counts <- c(12,29,18,3,34,4)

names(defect.counts) <- c("Weather","Overslept", "Alarm Failure",

"Time Change","Traffic","Other")

df.defects <- data.frame(defect.counts)

The code above creates a vector of numbers in the first line, establishes names for what

each of those numbers means in the next two lines, and creates a special object called a

data frame in the last line. I had to use a smaller font size for code that you can type into R

so that most of my text and output would show up looking decent on the printed page.

Design purists, I give you my apologies up front.

Code that I typed into R and the output that code produced is also recorded in 9-point

Courier New, but is not indented. This is important because it always has a leading caret

(that’s the “>” at the beginning of each line). This caret is the R prompt, which you will see if

you are using the R Console that comes with non-enterprise installations of the software.

DO NOT TRY TO TYPE THE CARET AS PART OF YOUR CODE OR YOU WILL GET ERROR

MESSAGES.

viii

Here is an example:

> df.defects

 defect.counts

Weather 12

Overslept 29

Alarm Failure 18

Time Change 3

Traffic 34

Other 4

This means that I typed in the command df.defects to see the contents of the data frame

that I named “df.defects” in R. The rest is what R responded back to me. If I typed in ">

df.defects" I would get an error message that looked like this:

Error: unexpected '>' in ">"

(And for experienced R programmers: YES, I know that some of the R code in here is not

optimized, and I know some of my simulations use loops instead of apply, and how could I

ever possibly do something like that because that's not the best thing to do. You're right. I

don't claim to provide elegant code in this book... just readable and/or explained code.)

My R Functions

I also keep many of the utility functions I use frequently on GitHub. You can scan a list of

them at https://github.com/NicoleRadziwill/R-Functions. Even though the text

of these functions is included in this book, you might just want to load the function into your

R console without having to cut and paste. You can use the source command in R to load

functions that are stored in separate files, even if those files are accessed over the web.

However, if your function is on a secure site (whose address starts with https) the process is

a little more complicated. Here's what you need to do to be able to load my functions into

your R console from GitHub:

1. Check to see which directory is the default for your R installation using getwd()

 ix

2. Create a file called sourceHttps.R in THAT directory, and place THIS code in

there, which comes from a guy named Tony Breyal and was originally posted on his

blog at http://tonybreyal.wordpress.com/2011/11/24/source_https-sourcing-an-r-script-

from-github/:

source_https <- function(u, unlink.tmp.certs = FALSE) {

 require(RCurl)

 if(!file.exists("cacert.pem"))

 download.file(url="http://curl.haxx.se/ca/cacert.pem", destfile =

 "cacert.pem")

 script <- getURL(u, followlocation = TRUE, cainfo = "cacert.pem")

 if(unlink.tmp.certs) unlink("cacert.pem")

 eval(parse(text = script), envir= .GlobalEnv)

}

3. Type source("sourceHttps.R") on your R command line, which will bring in

that function for you to use. (If it doesn't work, check to make sure that you're using

the right filename. A common error is to accidentally save the file as

sourceHttps.R.txt, and if you do that, you'll have to type that in your source

command.)

4. Check to make sure the function loaded properly by typing source_https - if all

is OK, then you'll see the code for the function displayed on the screen.

5. Now check to make sure that you can actually use that function to bring in new

functions from GitHub. First, do this:

source_https("https://raw.githubusercontent.com/NicoleRadziwill

/R-Functions/master/shadenorm.R")

6. If Step 5 didn't work, type library(RCurl) and then try the code in Step 5

again.

7. Finally, type shadenorm on the R command line, and press enter. If everything is

set up properly, you'll see the code for the shadenorm function displayed. Every

time you launch a new R session, you'll have to load source_https first using the

method above before you can load functions directly from GitHub.

x

My Data

I keep all of the data I used in the examples in this book on GitHub. You can see a list of it all

online at https://github.com/NicoleRadziwill/Data-for-R-Examples. Here is

an example of how to load my data directly into R from the GitHub repository. To get a

different file, be sure to change the part that says "mnm-clean.csv". You should be able to

do this to get any of the data in any chapters! Replace read.csv with read.table if you

are trying to upload data in a text (*.txt) file:

library(RCurl)

url <- "https://raw.githubusercontent.com/NicoleRadziwill/Data-"

url <- paste(url,"for-R-Examples/master/mnm-clean.csv",sep="")

x <- getURL(url,ssl.verifypeer=FALSE)

mnms <- read.csv(text = x)

How To Contact Me

If I have the time, I am more than happy to address comments and questions about this

book, its examples, or problems that you are having working through your own data. I am

more likely to have the time to respond to you in between semesters (which means most of

December, and May through early August). If you don’t hear back from me, don’t despair: it

just means that your message fell through the cracks, and I’m often either busy or distracted

(or just plain scatterbrained), so I might have missed it. Try again. If I don’t have the time to

answer or explore your query, I’ll let you know.

I also invite you to follow me on Twitter - my ID is @nicoleradziwill - but be advised, you will

also be getting a lot of tweet spam about severe weather, tornadoes, solar flares, coronal

mass ejections, and Burning Man. (You may like this.) Also, if there is ever an interesting

planetary configuration or an asteroid that is about to impact Earth, you will be among the

first to know.

Disclaimer

The purpose of this book is not to be mathematically elegant or comprehensive, but to give

you enough of what you need to know to be productive - quickly - without leaving you

 xi

statistically naive. I've included links to longer, more extensive proofs in many places if you

want to know more about the mathiness underlying everything in this book. I am not a

professional statistician or mathematical purist, but I am a realist who analyzes data almost

daily, and I want you to be able to analyze your data too.

Acknowledgements

I would be remiss if I did not mention the people who influenced me to become a person

who really likes to use, and teach, statistics. First of all, I am eternally indebted to all the

students that test drove my explanations of concepts, and my early drafts of this book. They

helped me recognize what can be confusing to learners, and helped me illuminate the things

that were actually confusing to me. I'm also thankful to my teaching assistants Meghan

Mooney, Aimee Cunningham, Cassidy Moellers, Paul Rose, and Chris Miller who helped me

in the initial stages of piloting the new approaches and creating new course materials.

Dan Teague of the North Carolina School of Science and Math in Durham, NC was my first

statistics teacher and deserves a lot of credit. He was brave enough to explain to the group

of 14- to 17- year olds in my class nearly two decades ago that statistics is just a game of

exploring variation in n-dimensional vector space. I was smitten. Bob Ryan of the 1990’s

statistics department at Penn State deserves some credit for keeping me hooked. He was

one of the executives of Minitab, a company he founded with his wife at the time, totally

down to earth, and told cheesy (yet "good" to me!) jokes in class. The jokes made me want

to keep doing applied statistics. (Yes, I can be that easily influenced.) Plus, he made all of us

buy Lyman Ott’s applied statistics book, which I still have, and still use. Mike Hayden of

Indiana State University also deserves a mention and much gratitude. His recipe for

executing and documenting a statistical hypothesis test (which he calls “Hayden’s 16 Steps”)

influenced me greatly, and certainly snuck into my own recipes and approach, even forming

the basis for "Dr. R's 12 Steps" which are a theme within this book. I am also eternally

grateful to him for helping me really understand what setting your alpha level is all about…

balancing cost and risk. And ethical considerations... but I added that last part.

I am also thankful for H. M. Schey's book Div, Grad, Curl, and All That: An Informal Text on

Vector Calculus. Had I not possessed that book as an undergrad, I never would have passed

xii

my vector calculus course, which was essential for my major (meteorology). The book you're

reading now is in many ways a tribute to this author's style.. especially the subtitle, "an

informal text on applied statistics."

I also appreciate the support and feedback from the Department of Integrated Science and

Technology (ISAT) at James Madison University (JMU) in Harrisonburg, Virginia, especially

my colleagues Anne Henriksen and Morgan C. Benton. Anne and I have had many

discussions about how to teach introductory statistics in an integrated way (that embraces

thinking about social context) for the past few years, and she helped me identify some really

important typos in some of the early versions of my chapters. My partner and co-

conspirator Morgan provided extensive technical, moral, and emotional support throughout

the entire process of preparing this book, including extremely geeky conversations exploring

things like the possible relationship between P-Values and the observer effect in quantum

physics... and pointers to all of the XKCD cartoons. And Netflix. And many hours of

fantastically blissful and enjoyable research, for which I have much gratitude.

 xiii

SECTION 1: BASIC CONCEPTS

 Categorical and Quantitative Data

 Formatting Your Data for R

 Measures of Central Tendency and Variability

 Probability and Probability Distributions

 Using the Normal Model

2

 3

1.1 Intro to R: Installation, Working Directories, & Packages

Objective

The purpose of this exercise is to get R installed on your computer, set your working

directory, check out some basic concepts with a quick "Hello World!" exercise, and practice

loading in a new package. By the end of this exercise, you'll have gained a rudimentary

understanding of R and its potential.

Background

The R statistical software is a tool for analyzing and visualizing data. It was designed in 1993

as a prototype to see how a statistical computing platform might be built. Today, R has

become more than just a simple testbed. It's a widely used, collaborative, open source

environment for statistical modeling and data analysis.

The R programming language is based on the S language (a statistical language based

around functions and the concept of objects). R is an interpreted language, which means

that it interprets plain text and numerical values input by the user. For example, if you type

in 2+2 at the caret prompt in the R console, the interactive R session will reply with 4. It's a

calculator! The fact that R is an interpreted language makes coding at the command prompt

very approachable; whatever you type in, you can see the results immediately when you

press the Enter key. R handles all sorts of things, from classical statistical tests to data

cleansing and advanced analysis. If you have some data and want to do something with it, R

more than likely has a solution for you.

Part 1: Installing R

To start with R, first we have to download it from the web.

1. Go to the website http://www.r-project.org/. This is the home base for everything

R, including manuals, FAQs, screenshots, and code repositories.

http://www.r-project.org/

4

2. On the left-hand side of your screen, click on "CRAN". This will take you to a page

titled "CRAN Mirrors".

3. On the page "CRAN Mirrors", scroll down until you see the heading “USA”.

Underneath this heading you'll find lots of links. Each link allows you to download R,

so no matter which one you press, you'll go to the R download page. Click on one

that's close to you geographically: this will take you to a page called The

Comprehensive R Archive Network (that's what CRAN stands for).

4. On that page, click the link that matches your operating system. This will take you to

a page titled "R for (your operating system)".

5. There, do one of the following:

 For Mac OS: click on "Download R for Mac OS". After that, select the link

that ends in the file format ".pkg".

 Note: If your browser informs you that this file may harm your

computer, select "keep".

 For Windows: click on "Download R for Windows". After that, click on the

link titled "base". Then, click "Download R for Windows".

 Note: If your browser informs you that this file may harm your

computer, select "keep".

6. Once your package/file has downloaded, navigate to your operating system’s

Downloads folder. From here, double click on the file/package and follow the on-

screen instructions to install R. A shortcut for R should be created on your desktop if

you are running Windows, or your applications folder if you are running Mac OS.

Part 2: Getting and Setting Your Working Directory

Now that you have R installed on your computer, you can set your working directory. This is

the place R will look to find data, functions, and other resources on your computer. You can

change your working directory to point R to any location on your local machine, depending

 5

on which local directory contains the data, functions, or other files you want to import into

R.

1. Open up R by clicking on the Icon that was created for you in Part 1. An R coding

environment should pop up. You'll see some introductory text and a caret (">")

which is R's way of telling you it's ready to do your bidding.

2. The first thing we want to do is find out where the working directory is already set.

You want to set it to a place that's convenient for you. To get your current directory,

type getwd() and press Enter.

3. Your working directory will display below where you typed getwd(). I recommend

creating a folder titled R in the default working directory (you'll do this outside of R,

either in the "Finder" application on Macs, or through the "Computer" option that

you see when you click the Windows start button). Navigate to it by typing

 setwd("/your/directory/name/goes/here/R")

If you wish to change your working directory entirely, find a directory that you like

and use setwd to specify the path to that directory.

4. If all is successful with the step above and you type getwd() once again, you should

see the directory you just specified. Your working directory has now been set!

5. Double check by typing dir() -- after which you should see the contents of the

directory you'd like R to point to.

Part 3: A Simple Hello World! Exercise

Now that your working directory is set, let’s do a simple "Hello World!" Exercise to become

more familiar with R syntax.

6

1. In your R terminal, type the following and press Enter:

 x <- ("Hello")

2. Type x and you should see [1] "Hello". In the step above, we assigned the word

Hello to a variable x by using the assignment operator <- which looks like a left-

pointing arrow. Note that any string, which is a series of characters containing non-

numeric values, must be contained in quotes.

3. Once again in your terminal, type the following and press Enter:

 y <- ("World!")

4. Type y and you should see [1] "World!". This time, we assigned the word

World! to a variable y.

5. Now let's combine these two words and store them to a new variable that we'll call

z. Type the following and press enter:

 z <- paste(x,y)

6. You'll see [1] "Hello World!" after typing z and Enter. The paste command

combined the contents of the variables x and y that you defined previously.

Part 4: Installing Packages

One of the best things about R is that it is a highly versatile environment. It allows you to

download packages to do all sorts of stuff like create awesome graphs, tables, and maps,

and it can also help you mine and analyze data. Bringing new packages into your R

environment is something you will do often. This is a three-step process. First, you have to

figure out which R package will provide the functionality that you need. For example, if you

want to use R to acquire data from Facebook, you might type "package to download

 7

Facebook data in R" into Google. A search might produce many R packages that provide

similar functionality, so you'll have to install the one that looks best, try it out to see if it's

what you're looking for. If not, search for a different package and start over.

Let's say our search tells us that the Rfacebook package might provide us with what we

need. The second step in the three-step process is to install this package (that is, download

the code to our machine) from a CRAN mirror (one of the many repositories around the

world that provide us with an up-to-date collection of all of the publicly downloadable R

packages).

1. While in your R console, navigate to a dropdown menu titled Packages (Windows)

or Packages & Data (Mac). Click on Install Package(s)… (Windows) or

Package Installer (Mac). Alternatively, just type this on the R command line,

replacing package_name with the actual name of the package you want to

retrieve (being very careful to get the capitalization and spacing right):

 install.packages("package_name")

2. A window should appear that says something along the lines of "Please select a

country". Select a location that's geographically close to you. That way, the bits and

bytes won't have to flow all the way around the globe to get to your machine, and

the installation process will probably be quicker. (Since I live in Virginia, I typically

choose the Ohio or Pennsylvania sites.)

3. After selecting your country, you should see a long list of libraries. For Mac users,

you may need to click on Get List to see the list (make sure CRAN (binaries)

is selected from the dropdown menu above before clicking Get List).

4. Navigate down until you see Rfacebook. Highlight it, and click OK (Windows) or

Install Selected (Mac) **For Mac users, make sure to check the "Install

Dependencies" box. It will save you A LOT of hassle later. This will download your

selected library. Note that you can download more than one library at once.

8

5. To load the library that you just downloaded into active memory so you can use it,

type:

 library("Rfacebook")

This will load in the selected library. As with downloading libraries, you can load

multiple libraries as well (but we recommend that you just do one at a time). Now

that you have the package installed on your local machine, you should never have

to install it again. However, every time you launch the R environment, you'll have to

use the library command for each package that you want to use during that

session.

Now What?

Congratulations! You have just downloaded R and started working within the R

environment. Over time, you'll see how versatile and cool R is, and how it can empower you

as a programmer and data analyst. You're now ready for some more advanced exercises, or

to begin exploring the useful examples at R Bloggers (http://www.r-bloggers.com).

You can also search Google to find different flavors of the "Hello World!" exercise that other

new R learners have tried. See if you can expand your code to do something more

interesting, like prompt you to enter your name from the keyboard using the scan()

function and have R say hello to you by name.

 9

1.2 Why I Love R

Objective

The purpose of this chapter is to give you a sense of why I use the R Statistical Software

daily, wherever and whenever I can. On Valentine's Day in 2012, I decided that I would

publicly declare my love for my favorite software package. Here is that declaration.

Preamble

My valentine is unique. It will not provide me with flowers, or chocolates, or a romantic

dinner tonight, and will certainly not whisper sweet nothings into my good ear. And yet – I

will feel no less loved. In contrast, my valentine will probably give me some routines for

identifying control limits on control charts, and maybe a way to classify time series. I’m

really looking forward to spending some quality time today with this great positive force in

my life that saves me so much time and makes me so productive.

Today, on Valentine’s Day, I am serenading one of the loves of my life – R. Technically, R is

a statistical software package, but for me, it’s the nirvana of data analysis. I am not a

hardcore geek programmer, you see. I don’t like to spend hours coding, admiring the

elegance of the syntax and data structures, or finding more compact ways to get the job

done. I just want to crack open my data and learn cool things about it, and the faster

and more butter-like1 the better.

Here are a Few of the Reasons Why I Love R

 R did not play hard to get. The first time I downloaded R from http://www.r-

project.org, it only took about 3 minutes, I was able to start playing with it

immediately, and it actually worked without a giant installation struggle.

1
 http://qualityandinnovation.com/2009/01/24/the-butter-test/

http://qualityandinnovation.com/2009/01/24/the-butter-test/
http://qualityandinnovation.com/2009/01/24/the-butter-test/

10

 R is free. I didn’t have to pay to download it. I don’t have to pay its living expenses

in the form of license fees, upgrade fees, or rental charges (like I did when I used

SPSS). If I need more from R, I can probably download a new package, and get that

too for free.

 R blended into my living situation rather nicely, and if I decide to move, I’m

confident that R will be happy in my new place. As a Windows user, I’m

accustomed to having hellacious issues installing software, keeping it up to date,

loading new packages, and so on. But R works well on Windows. And when I want to

move to Linux, R works well there too. And on the days when I just want to get

touchy feely with a Mac, R works well there too.

 R gets a lot of exercise, so it’s always in pretty good shape. There is an enthusiastic

global community of R users who number in the tens of thousands (and maybe

more), and report issues to the people who develop and maintain the individual

packages. It’s rare to run into an error with R, especially when you’re using a

package that is very popular.

 R is very social; in fact, it’s on Facebook. And if you friend “R Bloggers” you’ll get

updates about great things you can do with the software (some basic techniques,

but some really advanced ones too). Most updates from R Bloggers come with

working code.

 Instead of just having ONE nice package, R has HUNDREDS of nice packages. And

each performs a different and unique function, from graphics, to network analysis,

to machine learning, to bioinformatics, to super hot-off-the-press algorithms that

someone just developed and published. (I even learned how to use the “dtw”

package over the weekend, which provides algorithms for time series clustering and

classification using a technique called Dynamic Time Warping. Sounds cool, huh!) If

you aren’t happy with one package, you can probably find a comparable package

that someone else wrote that implements your desired functions in a different way.

 (And if you aren’t satisfied by those packages, there’s always someone out there

coding a new one.)

http://www.facebook.com/pages/R-bloggers/191414254890

 11

 R helps me meditate. OK, so we can’t go to tai chi class together, but I do find it

very easy to get into the flow (a la Mihaly Csikzentmihalyi) when I’m using R.

 R doesn’t argue with me for no reason. Most of the error messages actually make

sense and mean something.

 R always has time to spend with me. All I have to do is turn it on by double-clicking

that nice R icon on my desktop. I don’t ever have to compete with other users or

feel jealous of them. R never turns me down or says it’s got other stuff to do. R

always makes me feel important and special, because it helps me accomplish great

things that I would not be able to do on my own. R supports my personal and

professional goals.

 R has its own journal (http://journal.r-project.org). Wow. Not only is it utilitarian

and fun to be around, but it’s also got a great reputation and is recognized and

honored as a solid citizen of the software community.

 R always remembers me. I can save the image of my entire session with it and pick

it up at a later time.

 R will never leave me. (Well, I hope. It was really crushing that one time Java left

me. It was in the mid-90s, and I had spent about a year with Java 1.0 and was really

starting to get productive, at a time when the language was fresh and new and

amazing. But Sun deprecated all of my favorite classes and methods in Java 1.1, and

it hit my productivity and my heart so deeply, I've just never gone back to Java...

even though the language is much better behaved now, and has a lot more people

holding it to standards.)

The most important reason I like R is that I just like spending time with it, learning more

about it, and feeling our relationship deepen as it gently helps me analyze all my new data.

(This is seriously geeky – yeah, I know. At least I won’t be disappointed by the object

of MY affection.)

http://journal.r-project.org/

12

1.3 Variables and the Case Format

Objective

Before you analyze your data, prepare charts or graphs, or do statistical tests, it's important

to gain a sense of what that data is all about. What's the story behind the data? How good is

it? Why do I care about what research questions I'm asking? The purpose of this section is to

introduce you to some conceptual approaches for understanding your data before you load

it into a software package like R for further analysis. You will:

 Learn the difference between categorical and quantitative variables

 Learn how to make categorical variables out of quantitative raw data

 Find out the difference between independent and dependent variables

 See how to characterize your data in terms of the 5 W's (and 1 H)

 Be introduced to the concept of a case, and why it's important to prepare your raw

data in case format so that a statistical software package can understand it

When I was in school, going through my first few classes on statistics and data analysis, I was

really frustrated by all of these classifications of variables. I mean, why do you have to know

this stuff? It just seemed like worthless memorization. What I discovered later was that the

type of data you have available dictates what you can do with it.

Would you like to prepare a scatterplot and maybe perform a linear regression to generate

a predictive model? Well, OK, as long as you have two quantitative variables (which are

preferably both continuous). Want to do a one-way Analysis of Variance (ANOVA)? No

problem, as long as you have multiple collections of quantitative variables, and you can split

them up into groups using one of the categorical variables you've collected. Want to

construct a bar plot? OK, but you'll need categorical data or else you should be preparing a

histogram instead. Want to calculate your average grade? No problem, if your grades have

been measured quantitatively, but you'll have a hard time computing your average hair

color (a categorical variable). Knowing the types of variables you're working with is not only

essential to prevent you from going down unproductive dead ends, but also, it will help you

 13

decide what data structures to use if you need to do more advanced programming to

facilitate your data analysis.

Categorical and Quantitative Variables

A categorical variable places an observation in one (and only one) category chosen from two

or more possible categories. An observation can't be in more than one category at the same

time! If there is no ordering that can be done between the categories, the variable is

nominal, whereas if there is some intrinsic order that can be assigned to the categories,

those variables are ordinal. Here are some examples of categorical variables:

 Your gender (Male, Female, or Other)

 Your class in school (Freshman, Sophomore, Junior, Senior, Graduate)

 Your performance status (Probation, Regular, Honors)

 Your political party affiliation (Democrat, Republican, Independent)

 The color of some object (red, orange, yellow, green, blue, purple)

 What type of degree program someone is in (BS, BA)

 Your hair color (blonde, brown, red, black, white, other)

 What type of pet someone has (cat, dog, ferret, rabbit, other)

 The result of someone's performance in a game (win, lose)

 Race (Hispanic, Asian, African American, Caucasian)

 Machine settings (Low, Medium, High)

 Method of payment (Cash, Credit)

(Only two of the above examples are ordinal, and the rest are nominal. Can you pick out the

ordinal variables?)

Quantitative variables, in contrast, are measured as numbers. Here are some examples of

quantitative variables:

 Your age

 The number of siblings you have

14

 The number of spouses you've had

 The number of children you have

 Your weekly, monthly, or annual salary

 Your monthly rent or mortgage payment

 The mass or weight of an object

 The number of speeding tickets you've received

 The speed you were going when you got each ticket

 Your cumulative or most recent GPA (measured on a continuous scale from 0.0 to

4.0 or 5.0, depending on your school)

Just because a value is sampled as a number doesn't mean it's automatically a quantitative

variable! For example, here are some numbers which are actually categorical variables in

disguise:

 Your social security number (yeah, can't add or subtract those... logically)

 The outcome of a game where you have won (1) or lost (0)

 The boarding class on your airplane ticket (1, 2, 3, or 4)

 Which group you were assigned to for a team project in one of your classes (1,2, 3,

4, or 5)

 Your level of agreement with a particular statement (measured on a Likert scale

where 1=disagree, 2=slightly disagree, 3=neutral, 4= slightly agree, and 5=agree)

Sometimes researchers will treat values measured on a Likert scale as quantitative, and

create scatterplots or do inference tests that require quantitative variables. Purists, like

mathematicians, think this is a terrible practice (although researchers who use this approach

typically argue that the mean of values measured on a Likert scale has meaning to them). I

tend to side with the mathematicians on this one.

There are Different Kinds of Quantitative Variables

Quantitative variables can be classified further as being on the interval or ratio scales of

measurement. With interval data, you can perform logical operations between them, and

 15

you can add and subtract them, but you can't multiply or divide them. Temperature

measurements are on the interval scale, because although you can tell which of two

temperatures is higher or lower, and you can say that 80 degrees is 10 degrees warmer than

70 degrees, you can't say that 80 degrees is exactly twice as warm as 40 degrees. Length

and time are quantitative variables on the ratio scale of measurement: a distance of two

miles is exactly twice as long as a distance of one mile.

Fortunately, these distinctions are not so important if you're just trying to figure out what

statistical tests you can use, given that you know you have quantitative data.

Discrete and Continuous Data

Values that variables take on can also be classified as discrete or continuous. For example

when you roll a six-sided die, it can only take on one of six values (1 through 6). Categorical

data is, by its nature, discrete. Continuous variables can take on values anywhere within an

interval of possibilities. Distributions can also be discrete or continuous. It's easy to tell

whether a distribution is discrete or continuous by checking to see whether it's smooth or

spiky. Note that in the discrete distribution below, variables can only take on values that are

numbers between 0 and 10. In the continuous distribution, variables can take on values

anywhere within the interval from 0 to 10.

16

Here is the R code that produced the distributions you see here:

par(mfrow=c(1,2)) # Set up plot area with one row and two columns

p <- dbinom(0:10,size=10,prob=0.5)

plot(0:10,p,type="h",lwd=2,main="Discrete Distribution")

x <- seq(0,10,length=100)

y <- dnorm(x,mean=5,sd=2)

plot(x,y,type="l",lwd=2,main="Continuous Distribution")

Independent and Dependent Variables

This characterization of variables describes how you plan to use your categorical and

quantitative variables. A dependent variable is one that you've decided to predict from other

(independent) variables. As a result, independent variables are sometimes called predictors,

and dependent variables are sometimes called response variables. If you have only one

predictor and one response variable (that is, one independent variable that you use to

predict one dependent variable), and both are quantitative, the dependent variable will be

the one plotted on the vertical (y) axis.

Because this label describes how you're using your data, you can generate multiple

predictive models from one dataset and change what variables you're treating as

independent and dependent. Here are some examples of what you can do:

 Use simple linear regression to predict one quantitative dependent variable based

on the values of one quantitative independent variable

 Use multiple linear regression to predict one quantitative dependent variable based

on the values of two or more quantitative independent variables

 Use logistic regression to predict one categorical dependent variable based on the

values of one or more quantitative (or categorical) independent variables

 17

Recoding Quantitative Variables into Categorical Variables

Sometimes it is useful to generate categorical variables from quantitative values you have

collected. This process is called recoding. For example, say you want to do a study to see

whether top performing students smoke fewer cigarettes than students who don't do as

well. How do you determine which students are the high performers, and which students

are not? Perhaps you might ask them if they're in an honors program or not, but the criteria

for getting into an honors program is different from school to school. Also, there may be lots

of high performing students who have chosen not to enroll in an honors program due to

schedule constraints, program requirements, or other unrelated factors. One way to get

around this challenge is to gather information about student performance in terms of a

quantitative variable and then recode that variable to a categorical variable after the data is

collected.

For example, you may decide that cumulative GPA is a reasonable measure for student

assessment. You go out and ask 200 students to tell you their cumulative GPA (so far). You

end up with a wide variety of values! A substantial fraction of students in your sample didn't

do so well, and they are reporting cumulative GPAs between 0.5 and 1.8. However, there

were also quite a few students whose GPAs were greater than 3.7 (something you didn't

expect). How do you decide which students are the high performers? Since you have so

many, you may decide that a cumulative GPA of 3.7 is a good threshold to set.

But what would happen if, in your sample of 200 students, you didn't have very many at all

who achieved a cumulative GPA greater than 3.7? You might look through your data and say

well, it might be more reasonable (for this group of students) to set the threshold at a

cumulative GPA of 3.5. Or maybe you will decide to set the bar a little lower, at 3.2. It all

depends on what kind of data you collect.

The nice thing about collecting quantitative data wherever you can is that you always have

the flexibility to decide on the boundaries for your categories later! What would have

happened if you decided, before the fact, that a "high performer" was someone who had a

cumulative GPA greater than 3.8? Then, you went out and collected data, and only asked

students if their GPA was greater than 3.8 (thus, you collected that data as a categorical

18

variable). When you reviewed the data you had collected, you found out that no students

reported a cumulative GPA greater than 3.8! In this case, your research study would be dead

in the water. SOL, and not in the educational-standards sense. You would have to start

over... and you probably wouldn't be happy about it.

You lose information when you recode quantitative variables into categorical variables. As a

rule, it's always best to collect data as quantitative when you can, and reserve the privilege

of creating categorical variables from your quantitative values later.

To recode a quantitative variable into a categorical value, just 1) decide on the boundaries

for your categories, and 2) assign each quantitative variable into a category. You can revise

your recoding as often as you need to. It's a great superpower to have.

A Simple Characterization of Metadata Using the 5 W's (and 1 H)

Metadata is data that tells you more about data. What this means, in real people terms, is

that it can be useful to talk about how you collected your data and why you collected your

data so that people in the future will know how (and whether) to use the beautiful data

resources that you have painstakingly prepared. Think of metadata as your way to ensure

your legacy in the realm of personal time travel: some data analyst in the future, who finds

the data that you collected, will try to determine whether he or she can use that data for

their own unique purposes. And you can help them. Some of the questions you will want to

answer for them (what I call the "5W/1H questions") are:

 Who: There are two parts to answering this question! First, who are your data

about? The data can be about a person, a group of people, an object or class of

objects (e.g. computers, machines, or a particular type of computers or machines), a

type of animal, or maybe even an inanimate object like a lake or pond (where you

might be collecting information about water quality or other aspects of the

environment). Second, who is collecting the data? A future researcher will treat data

collected by an elementary school student much differently than he or she would

treat data collected by a scientist or a professional in industry. Be sure to establish

your qualifications for collecting the data, and in what context you are applying your

 19

skills. You may even want to include contact information in case anyone has a

question about your data.

 What: What is your data about? What types of data are you collecting about

whatever subject you identified when you answered the "who" question? I like to

provide a subjective overview about each of my variables here, sometimes

articulating which are categorical and which are quantitative, the enumerations of

each of the possible categories, and whether I recoded some quantitative data to

get some of the categorical variables.

 When: When were your data collected? This is particularly important if you wish to

look at changes in the values of a variable that occur over time (for example,

measurements of CO2 in the atmosphere if you are studying global warming). Also,

values collected earlier in time will be subject to the limitations of the less advanced

sensors or technologies that are used to collect the measurements.

 Where: In what location(s) did you collect your data? Sometimes, this can be as easy

as collecting a geographical marker (for example, a latitude and longitude) for each

item in your sample. Or, you might just describe the location that is associated with

all of your data, for example, the city, country, or organization within which your

data was acquired.

 Why: For what original purpose did you collect your data? What were the objectives

of your study? This will help a future researcher understand the assumptions and

limitations that you were aware of at the time the data were collected.

 How: How were the data collected? You might want to explore what instruments

you used to measure the values for each variable, or what sampling strategies you

used to ensure a random sample where the observations are independent. If you

obtained your data from an archive (or from multiple archives), be sure to include

the locations of the archives, so that someone in the future will potentially be able

to retrieve the source data directly from the same location you did.

Why is it important to describe these things? First and foremost, because if you don't do it

at the point of data collection... you'll probably forget. If you're young, or if this data is

important to you, you might be thinking "no way... I'm not going to forget." But you will. I've

collected so much data over the past two decades that when I go back and look at an old

20

dataset, I have to remind myself what I was thinking about the first time I worked with it. So

metadata provides a way for my past self to communicate with my future self and help her

be more productive.

Second, while you're analyzing your data, you may need to enlist the help of friends,

colleagues, or other smart people on the internet who can help you troubleshoot the issues

you're having analyzing your data in a software system like R. People won't be able to help

you if you can't provide them with useful information about your data, how you got it, and

what you've done with it already. So be ready to exchange metadata and a step-by-step

history of what you've done with (and to) your data with any person (or bot; yes, we're

almost there) who may be able to provide help.

Third, reproducibility is becoming a more and more significant issue in the sciences. What

this means is that if you've done an experiment once, you should be able to collect the data

and analyze it again, and draw pretty much the same conclusions. However, this is much

easier said than done. There's a huge volume of published research in the academic

literature, but not all of it can be reproduced - even by the researchers who designed and

executed the initial studies! The Wikipedia page on reproducibility

(http://en.wikipedia.org/wiki/Reproducibility) includes a section on "noteworthy

irreproducible results" which, though sparse, includes the famous "cold fusion" case from

the late 1980's. Although this would have represented a huge breakthrough in our ability to

produce energy, the experiment was not reproducible and could not be verified. Also,

because the results could not be reliably reproduced, further studies to explore the

technological potential of cold fusion were impossible.

Finally, when you encounter data that's new to you that someone else has collected, it is

always useful to ask yourself the 5W/1H questions to get a better sense of what that data is

all about. Also, thinking about the data will help you understand how to structure the data

for analysis in R or another statistical software system using cases (described below).

 21

Case Format

I've found that the most challenging aspect of gathering data is making sure that you format

your results so that a statistical software package will actually be able to do something with

it. Here are some heuristics (rules of thumb) to help you format your data. In your mind,

picture a spreadsheet with rows, columns, and cells where you will enter each element of

your data.

 Each of the columns should contain ONE AND ONLY ONE variable

 Each of the rows should contain ONE AND ONLY ONE "who" from your sample

 The total number of rows should equal n, the number of items in your sample

For example, if you are collecting information about the distributions of colors and defects

in a bag of M&Ms, it's very easy to produce a spreadsheet that looks like this:

However, this is bad! If you try to upload data in this format into a statistical software

package, it won't know what to do. It's not in case format. After you answer the 5W/1H

questions, you'll know that that answer to "Who are your data about?" is "the M&Ms." Each

22

case (or row) in your properly formatted data should be about one (and only one) "who" -

which, in this case, is one M&M. Each row should contain data about one (and only one) of

the M&Ms in your sample. In contrast, here's what data properly formatted as cases looks

like:

Notice how each row contains data collected from one M&M. Also, we didn't include any

summary information in our spreadsheet, for example, the total number of items in our

sample (49) that's been tallied in the top example. Our statistical software can very easily

produce any of this summary information, so we don't need to add it up ourselves. We have

been consistent in labeling the values from our categories so that our statistical software

will be easily able to compile the values (that is, we didn't say "Red" in one place and "RED"

in another - R will treat those as two completely different values).

 23

Other Resources

 Here is a web-based game that lets you guess whether a variable is categorical or

quantitative: http://mathnstats.com/applets/Categorical-Quantitative.html

 Here's a useful article on continuous quantitative vs. categorical data:

https://eagereyes.org/basics/data-continuous-vs-categorical

 Jeff Good of UC Berkeley has written "A Gentle Introduction to Metadata" at

http://www.language-archives.org/documents/gentle-intro.html

 A catalog of R resources for reproducible research is available at http://cran.r-

project.org/web/views/ReproducibleResearch.html

 There is even a Coursera class where you can learn all about reproducible research!

Find it here: https://www.coursera.org/course/repdata

http://mathnstats.com/applets/Categorical-Quantitative.html
https://eagereyes.org/basics/data-continuous-vs-categorical
http://www.language-archives.org/documents/gentle-intro.html
http://cran.r-project.org/web/views/ReproducibleResearch.html
http://cran.r-project.org/web/views/ReproducibleResearch.html
https://www.coursera.org/course/repdata

24

1.4 Central Tendency and Variability

Objective

A probability distribution (or "distribution" for short) describes the possible outcomes for an

event, and how likely each of those outcomes are. When characterizing a distribution of

categorical or quantitative values, the things you typically want to know are: 1) where's the

center of it, 2) how fat or thin is it, and 3) does it have any unusual characteristics (e.g. is it

skewed to the right or left, or does it have more than one hump, or is it asymmetric).

"Central tendency" is a fancy sounding phrase that just means: if you have a whole bunch

of values, what's in the middle (and what does "middle" even mean)? Measures of

variability (e.g. variance and standard deviation) tell you how fat or thin your distribution is.

This chapter covers these two basic topics, including how to compute them analytically and

how to compute them in R. Distribution shapes are covered in the chapter on histograms.

Who cares about such a simple topic? Well, just knowing the values for the mean, median,

and mode, coupled with the variability information provided by the variance and standard

deviation, you can get a sense of the shape of your distribution. You can also sometimes get

a sense for what proportion of your observations fall within various bounds. Also, many of

the statistical inference tests you perform are related to figuring out if you really know

where the center of a particular distribution is located. If you read fancy proofs, you'll hear

the term "Expected Value" quite a lot. What they mean is: the value we think is in the

middle of all the possibilities. That's all. This chapter covers the first two of these basic

topics, including how to compute them analytically and how to compute them in R.

Distribution shapes are covered in the chapter on histograms.

Mean (Arithmetic)

The arithmetic mean identifies the midpoint between all the values in a dataset of numbers,

even if there isn't an observed value at the midpoint. It is calculated by adding up all of the

 25

values, then dividing by the total number of observations. Finding a mean in R is simple,

because you can pass values directly to mean or give it a vector or data frame selection:

> mean(c(1,2,3,4,5,6,7,8))

[1] 4.5

> x <- c(1,2,3,4,5,6,7,8)

> mean(x)

[1] 4.5

The arithmetic mean is not the only variety of mean that can be used to express central

tendency! The geometric mean and harmonic mean are also potential measures if your

quantitative data is on the ratio level of measurement (and, for the geometric mean, if your

values are positive). The geometric mean characterizes the average growth rate between

values, and is often used in financial applications. The harmonic mean characterizes an

average rate. I've never used the geometric or harmonic means for data analysis personally,

though, so I can't provide any recommendations beyond noting that you can potentially use

these.

Median

The median identifies the observation that sits at the midpoint between all the observations

in a dataset. If there are an even number of observations, the median is computed as the

arithmetic mean of those two observations that sit at the midpoint. Like mean, you can pass

values directly to median or give it a vector or data frame selection. Here are some

examples in R:

> median(c(1,2,3,4,5,6,7,8,9))

[1] 5

> median(c(1,2,3,4,5,6,7,8,9,10,11,12))

[1] 6.5

As long as the values in a dataset can be ordered, you can find the one (or two) observations

that sit at the midpoint, and thus find the median. You can compute a median for all kinds of

26

variables... except categorical variables that are nominal. As an example, you can't compute

the median of several M&M colors (because that's a categorical variable at the nominal level

of measurement) but you can compute the median of several scrabble tile values (because

those letters can be ordered). Because of its versatility, there are many inference tests that

can be done to compare the medians of datasets.

Mode

The mode identifies the most frequently observed value in a dataset. Unlike the median,

calculation of the mode is not precluded by the level of measurement. For example, it's

possible to determine:

 The mode of M&M colors in a bag (that is, the most frequently observed color)

 The mode of Scrabble tiles still left in the bag (that is, the letter or letters that have

the most tiles available)

 The mode of customer satisfaction responses (that is, which item between "Strongly

Dissatisfied" and "Strongly Satisfied" was most frequently selected)

 The mode for daily high temperatures in summer (that is, which high temperature

occurs most frequently)

These illustrate what the mode looks and feels like for nominal, ordinal, interval, and ratio

level data, respectively. The only one you have to be careful with are modes for ratio level

quantitative variables, because sometimes the mode is just not meaningful. As an example,

think about what your data might look like if you're measuring how much people weigh. If

you're collecting that data in pounds to the second decimal place, it's likely that your data

looks something like this, with no repeated values:

145.59 220.31 197.63 105.25 118.80 145.14 170.28 166.37

It would be really unlikely for the mode to be meaningful in this case: we might not have any

numbers that are observed more than once, making the "most frequently appearing

 27

observation" an absurd notion. Bottom line: if you have ratio level data, check to make

sure the mode is meaningful before you report it. It's actually pretty easy with R to

determine if a mode is "meaningful" or not. Here's an example where the mode is clearly

meaningful. First, we pull 100 random numbers from a uniform distribution between 1 and

10. (This is just like rolling dice, only we're working with a 10-sided die where each of the

numbers 1 through 10 is equally likely to appear. That's the purpose of the runif function.)

> x <- round(runif(100,1,10))

> x

 [1] 7 8 1 3 5 4 3 3 4 3 3 7 2 4 1 7 2 7 8 9 6

 [22] 1 7 2 1 5 2 1 10 8 10 3 3 5 3 7 4 9 6 1 2 4

 [43] 5 10 8 1 5 3 2 3 1 8 7 4 4 6 7 7 9 3 6 2 9

 [64] 5 2 3 4 1 8 5 5 10 10 8 7 6 5 7 8 10 9 10 4 7

 [85] 2 7 6 9 8 9 5 10 9 2 1 6 8 3 6 5

Now, let's add up how many 1's, 2's, 3's and so forth we got using the random number

generator by invoking the table command. The top row represents the numbers from 1 to

10, and the bottom row includes the counts of how many of those random numbers were

generated by runif. Using sort arranges the numbers so that the lowest frequencies

appear first, and the higher frequencies appear later.

> y <- sort(table(x))

> y

x

 6 9 10 4 1 2 8 5 3 7

 8 8 8 9 10 10 10 11 13 13

Here are the commands we can use to pull out which elements of x appear most frequently

(mode.names) and how many times they appear (max(y)). As long as you store your sorted

table in a variable called y, you will be able to use these commands to identify the mode (or

modes, because you can have more than one) and the observation count that corresponds

to that maximum value.

> mode.value <- max(y)

> mode.value

[1] 13

> mode.names <- names(y[y==max(y)])

28

> mode.names

[1] "3" "7"

This also works if your values are categorical (at the nominal level of measurement). Imagine

that you own a restaurant specializing in New Mexican cuisine. You want to find out how

your customers prefer the chile on their burritos: red, green, or Christmas. Here's a way to

simulate that data from 100 customers:

> x <- sample(c("RED","GREEN","CHRISTMAS"), 100, replace=TRUE)

> x

 [1] "GREEN" "RED" "RED" "RED" "CHRISTMAS"

 [6] "RED" "GREEN" "CHRISTMAS" "CHRISTMAS" "GREEN"

 [11] "GREEN" "RED" "CHRISTMAS" "CHRISTMAS" "CHRISTMAS"

The mode can be determined the same way as in the previous example:

> y <- sort(table(x))

> names(y[y==max(y)]) # these are the modes

[1] "RED"

> max(y) # we just have one mode... how many customers preferred red?

[1] 35

What about the case where the mode is meaningless? Well, that's what would have

happened if we didn't round our randomly sampled numbers between 1 and 10. Try this,

and you'll see a mode that's not meaningful at all:

> x <- runif(100,1,10)

> y <- sort(table(x))

> max(y)

[1] 1

> names(y[y==max(y)])

 [1] "1.08012562571093" "1.12060043844394" "1.17615319066681"

 [4] "1.18749733804725" "1.39209767919965" "1.41802837909199"

 [7] "1.4363781651482" "1.62966463225894" "1.63671832019463"...

 29

What's the frequency of our mode? One. Just one observation. That means EVERY SINGLE

ONE of the values we generated is the mode. A hundred values, a hundred modes. If

everyone is an important mode, then no one is an important mode. The mode, in this case, is

meaningless as an indicator of central tendency.

Relationships Between Mean, Median, & Mode

If you have a collection of quantitative values, and you know the mean, median, and mode,

there are a lot of things you can figure out about the shape of your distribution. As a result,

these measures of central tendency are like clues that you can use to draw a picture of the

distribution in your head:

 The mode is always at the highest point of the distribution... the peak.

 If the distribution is skewed to the left, meaning that it has a tail stretching out

along the left side of the x-axis... the median is pulled to the left.

 If the distribution is skewed to the left, the mean is also pulled to the left. But all it

takes is one or two outliers to really really pull that mean even farther to the left.

The mean is much more sensitive to outliers than the median.

 If the distribution is skewed to the right, meaning that it has a tail stretching out

along the right side of the x-axis... the median is pulled to the right.

 If the distribution is skewed to the right, the mean is also pulled to the right. But all

it takes is one or two outliers to really really pull that mean even farther to the right.

The mean is much more sensitive to outliers than the median.

 In a symmetric distribution like the normal, the mean, median, and mode are all

lined up together at the peak of the distribution. The most frequently observed

value (mode) is the same as the average value (mean). Exactly 50% of the

observations are below the mean, and 50% of the observations are above the mean,

putting the median at the same spot as the mean.

In summary, here are the measures of central tendency that can be applied to the various

variable types and levels of measurement:

30

Variable Type Level of Measurement Ways to Represent Central Tendency

Categorical Nominal Mode
 Ordinal Median
Quantitative Interval Arithmetic Mean, Median, Mode
 Ratio Arithmetic Mean, Median, Mode,

Geometric Mean, Harmonic Mean

Variance

The variance represents how spread apart the values in your distribution are, and as a

result, characterizes how fat or thin the distribution will be when plotted. To get the

variance, you need to know all of the values in your dataset. You use them to calculate

variance like this:

1. First, find the arithmetic mean of all the values.

2. Find the squared deviations: Take each value one at a time, and subtract the mean

(which gives you negative numbers for all values that are below the mean, and

positive numbers for all values that are above the mean) and then square whatever

you get (that is, multiply it by itself). This makes all the values positive.

3. Now divide the total of all those squared deviations you just figured out by one

less than the number of observations. (Why don't we just use the actual number of

observations, and take the average? Because that would be biased... but more on

that later when we talk about Bessel's correction.)

The equation that represents variance looks like this. Variance is represented by 2, and n is

the number of observations. The sum is over all elements of your dataset (from the first one

through the nth one), and you're adding up the squared differences between each value and

the overall mean:

 31

Variance is also very easy to figure out in R, as long as you have your data arranged in a

vector (or can extract a vector out of a data frame). For simplicity, let's just use the values

that are stored in x - the ones we got from sampling 100 random numbers between 1 and

10:

> var(x)

[1] 6.556027

Standard Deviation

Take the square root of the variance, and you'll get the standard deviation:

This is also dead easy to do in R using the sd command. Of course, if you have the variance

handy, you can just take the square root of that to get the standard deviation and it all

works out the same:

> v <- var(x)

> sqrt(v)

[1] 2.560474

> sd(x)

[1] 2.560474

Bessel's Correction: Why We Divide by (n-1)

If you Google around to find equations for calculating the variance and standard deviation,

sometimes they tell you to divide by the total number of observations n, and other times

they tell you to divide by (n-1). Oh no!! Which one should you believe? What do you do?

And which one does R do?

32

 Which one should you believe? Believe the (n-1) version. It's more accurate,

especially when the sample size is small.

 What do you do? If you calculate variance and standard deviation yourself, be sure

to use the (n-1) version.

 And which one does R do? Fortunately, R uses the (n-1) version for both the

variance and the standard deviation... so you can trust R.

What's the Rationale for Bessel's Correction?

The smaller your sample, the less likely you are to realistically capture the magnitude of the

variance in a distribution. It takes a lot of observations to get a good sense of the true

spread-outed-ness of values within a distribution!

But to determine the variance and standard deviation, you have to know the mean of the

entire population (or at least have a good idea what it is). You're only guaranteed to

estimate this well if you have a really big sample. So with an ordinary sized sample, you're

not going to capture all of the variance that's really there. You need to bump up your

estimate to account for the variability that you can't see. And since this is always true for

sample sizes that are 1 or more...

... that means if you use the (n-1) version, you'll be making your estimates of the variance

and standard deviation just a little bigger. The bigger the sample size n gets, the closer the

biased estimator (where you divide by n) will be to the unbiased estimator (where you

divide by n-1). Unbiased is better. This adjustment improves your variance estimate

tremendously, and your standard deviation estimate almost as tremendously.

 33

Other Resources

 Did you know there are guidelines on how to report central tendency and variability

in APA style research papers? Details are provided here: http://statistics-help-for-

students.com/How_do_I_report_central_tendency_and_dispersion_data_in_APA_s

tyle.htm#.VQtgtI7F-o0

 Find out more about Bessel's correction (n-1 in the calculation of the variance and

standard deviation) at http://en.wikipedia.org/wiki/Bessel%27s_correction

 A really nice, intuitive explanation for Bessel's correction with graphs is here:
http://www.physics.ohio-state.edu/~durkin/phys416/Fall2011/LectureExtras/besselfactor.pdf

http://statistics-help-for-students.com/How_do_I_report_central_tendency_and_dispersion_data_in_APA_style.htm%23.VQtgtI7F-o0
http://statistics-help-for-students.com/How_do_I_report_central_tendency_and_dispersion_data_in_APA_style.htm%23.VQtgtI7F-o0
http://statistics-help-for-students.com/How_do_I_report_central_tendency_and_dispersion_data_in_APA_style.htm%23.VQtgtI7F-o0
http://en.wikipedia.org/wiki/Bessel%27s_correction
http://www.physics.ohio-state.edu/~durkin/phys416/Fall2011/LectureExtras/besselfactor.pdf

34

1.5 Descriptive Statistics

Objective

Sometimes, you want an easy way to quantitatively summarize the characteristics of a

collection of data, whether that information comes from an experiment, an archive, a

survey, or some other kind of source. Descriptive statistics provide simple summaries about

the sample you have collected, and complement charts and graphs that provide an

additional representation of the data. With descriptive statistics, you are not attempting to

draw any conclusions about the data: you are just presenting what the data shows, prior to

any analysis.

Descriptive statistics are often supplemented by measures such as skewness and kurtosis,

which describe the basic state of the distribution, or basic charts and graphs, such as

histograms, boxplots, scatterplots, and contingency tables, which are covered in Section 2:

Charts, Graphs, and Plots.

Data Acquisition

First, let's load some data from the National Oceanic and Atmospheric Administration

(NOAA) severe weather data inventory at http://www.ncdc.noaa.gov/swdi. We're going to

choose our data, download it to our local machine, unzip it, and then make sure R is looking

in the right directory. Finally, we can examine descriptive statistics on our data.

After going to the main SWDI page, I clicked on the option for "Bulk Download" and then

"HTTP". This took me to http://www1.ncdc.noaa.gov/pub/data/swdi/ which is a

directory listing for several CSV files. (I notice that all the files have a .gz extension, which

means that I need to unzip the file I download before I can use it. To be able to handle .gz

files, I have to download a utility program that unzips this particular kind of zipped file. Since

I use a Windows machine, I first downloaded and installed a program called 7-Zip from

http://download.cnet.com). Then, I navigated back to the SWDI repository and

 35

downloaded tvs-201407.csv.gz to my local machine, unzipped it, and saved the

resulting tvs-201407.csv file to my C:/Temp directory. This is a document containing all

the Tornado Vortex Signatures (TVS) in the United States during the month of July 2014.

Now I can read the data into R:

setwd("C:/Temp")

tvs <- read.csv("tvs-201407.csv",header=T,skip=2)

Because the first two lines of the data file contain comments (they start with a #, and so are

ignored by R), the skip=2 argument tells R to read in my CSV data, but only after skipping

those first two extraneous lines. Now, I can take a look at what's in the file:

> head(tvs)

 X.ZTIME LON LAT WSR_ID CELL_ID CELL_TYPE RANGE AZIMUTH

1 2.01407e+13 -91.53766 41.34569 KDVN M7 TVS 46 250

2 2.01407e+13 -94.51676 40.24530 KMCI J1 TVS 46 13

3 2.01407e+13 -88.06882 41.52247 KORD W7 TVS 19 210

4 2.01407e+13 -94.79196 40.04702 KMCI C1 TVS 33 356

5 2.01407e+13 -87.99919 41.58894 KORD W7 TVS 14 207

6 2.01407e+13 -91.13138 41.24971 KDVN S7 TVS 33 229

 AVGDV LLDV MXDV MXDV_HEIGHT DEPTH BASE TOP MAX_SHEAR MAX_SHEAR_HEIGHT

1 34 83 83 4 26 4 30 29 4

2 32 52 52 3 17 3 20 18 3

3 37 50 53 2 7 1 8 46 2

4 32 31 70 14 18 2 20 33 14

5 41 56 56 1 6 1 6 63 1

6 33 53 53 3 6 3 9 26 3

What is this data about? It looks like the first column contains a timestamp, and the second

two contain the longitude and latitude of the observed TVS (a place where Doppler radar

detected a likely tornado). WSR_ID is the name of the radar station that reported the

observation. CELL_ID provides a way for us to distinguish between tornadoes associated

with different thunderstorms. CELL_TYPE indicates that we are looking at TVS

observations, so this value should be the same for all rows. RANGE and AZIMUTH tell us

where the TVS was observed, relative to the radar, and the remaining values tell us physical

parameters about the tornado signature. The information we will be interested in gathering

36

descriptive statistics for are the DEPTH of the tornado signature (in thousands of feet), the

TOP of the tornado signature (also in thousands of feet), and the MAX_SHEAR (or maximum

wind shear, in meters per second). Since we are only interested in a subset of the data, let's

construct a smaller data frame containing only those values that are of interest to us. This

creates a new data frame, sub.tvs, which consists of all rows from tvs, and just these

three named columns:

sub.tvs <- tvs[,c("DEPTH","TOP","MAX_SHEAR")]

Descriptive Statistics with summary

Once we have our data in the proper format, we can generate descriptive statistics using the

summary command:

> summary(sub.tvs)

 DEPTH TOP MAX_SHEAR

 Min. : 5.00 Min. : 5.00 Min. : 10.00

 1st Qu.: 7.00 1st Qu.: 9.00 1st Qu.: 24.00

 Median :10.00 Median :13.00 Median : 30.00

 Mean :12.34 Mean :15.57 Mean : 38.03

 3rd Qu.:17.00 3rd Qu.:21.00 3rd Qu.: 42.00

 Max. :63.00 Max. :69.00 Max. :283.00

The descriptive statistics that are displayed are:

 The minimum value observed for this variable in the dataset

 The first quantile (also called Q1); 25% of the observations are BELOW this value

and 75% of the observations are ABOVE this value

 The median; an actual observation within the dataset indicating that 50% of the

observations are BELOW this value and 50% are ABOVE this value

 The mean; a number characterizing the center of the distribution that is obtained by

finding the average value across all the observations

 The third quantile (also called Q3); 75% of the observations are BELOW this value

and 25% of the observations are ABOVE this value

 The maximum value observed for this variable in the dataset

 37

Descriptive statistics can give us a quick indication of some of the characteristics of the

distribution: for example, if the mean is far greater than the median (to the right of it on the

probability distribution), we know that the distribution must be skewed to the right.

Similarly, if the mean is far less than the median (to the left of it on the probability

distribution), we know that the distribution must be skewed to the left.

One limitation of the summary command in the base R package is that it doesn't give you

really useful and critical descriptive statistics like the standard deviation, variance, and mode

(the most frequently observed value in the set of observations). Fortunately, you can

compute those separately, but you have to do each variable one at a time:

> sd(sub.tvs$DEPTH)

[1] 7.19

> var(sub.tvs$DEPTH)

[1] 51.7

To obtain the mode, first cut and paste the following code to load in the mode function:

 mode <- function(x) {

 uniq.vals <- unique(x)

 uniq.vals[which.max(tabulate(match(x, uniq.vals)))]

 }

Now you can use that function on your data:

> mode(sub.tvs$TOP)

[1] 7

Some of these limitations can be overcome by using an alternative approach: the

stat.desc function which is part of the pastecs package.

38

Descriptive Statistics with stat.desc from the pastecs Package

If you don't have it already, first install.packages("pastecs") and then when it's

available on your machine, call it into memory using library(pastecs). Only then will

the following commands work.

> options(scipen=100)

> options(digits=3)

> stat.desc(sub.tvs)

 DEPTH TOP MAX_SHEAR

nbr.val 1532.000 1532.000 1532.000

nbr.null 0.000 0.000 0.000

nbr.na 0.000 0.000 0.000

min 5.000 5.000 10.000

max 63.000 69.000 283.000

range 58.000 64.000 273.000

sum 18905.000 23850.000 58260.000

median 10.000 13.000 30.000

mean 12.340 15.568 38.029

SE.mean 0.184 0.205 0.631

CI.mean.0.95 0.360 0.401 1.238

var 51.724 64.179 610.432

std.dev 7.192 8.011 24.707

coef.var 0.583 0.515 0.650

Since stat.desc likes to use scientific notation, the first two commands allow you to set

the number of significant digits you want to see. In addition to the basic descriptive statistics

provided by summary, stat.desc shows you:

 The number of observations as nbr.val

 The number of null observations as nbr.null

 The number of "not available" (NA) observations as nbr.na

 The range of values (that is, how far it is to get from the minimum observed value to

the maximum observed value) as range

 The sum of all values as sum

 39

 The standard error of the mean (SE.mean) indicates how precisely you can know

the true mean of the population, given only what you have in your sample. It

accounts for the sample size and the scatteredness (or dispersion) of the dataset.

 The width of the 95% confidence interval as CI.mean.0.95 (meaning that the

mean minus this value indicates the lower bound of your confidence interval, and

the mean plus this value indicates the upper bound of the confidence interval)

 The variance of all the values, which gives you an indication of how scattered or

dispersed they are, as var

 The standard deviation, which is the square root of the variance and indicates

pretty much the same thing as the variance, as std.dev

 The coefficient of variance, which is the standard deviation divided by the mean,

and also gives a sense of how scattered or dispersed the observations are, as
coef.var

Here is a summary of the arguments that you can use to generate descriptive statistics:

Argument to stat.desc What it does

basic=TRUE Include number of observations, number of
nulls, number of NAs, min, max, range and sum

desc=TRUE Include median, mean, standard error of the
mean, width of the confidence interval,
variance, standard deviation, and coefficient of
variation

norm=TRUE Include measures for skewness and kurtosis
p=0.99 Specify the width of the desired confidence

interval (e.g. 99%)
options(digits=3) Specify the number of significant digits to

display (e.g. 3)
options(scipen=999) Specify a "penalty" to use when determining

whether scientific notation (e.g. 1E+03 or
1000); higher values incur greater penalty, and
a 999 will prevent use of scientific notation
almost entirely

40

Other Resources

Here are some other resources to help you understand the concepts in this chapter and

explore the severe weather datasets that were obtained:

 This article discusses the difference between descriptive statistics and inferential

statistics: https://statistics.laerd.com/statistical-guides/descriptive-inferential-

statistics.php

 This article and online quiz will help you get a better handle on definitions:

http://study.com/academy/lesson/what-is-descriptive-statistics-examples-lesson-

quiz.html

 This applet can be used to explore descriptive statistics on simple datasets:

http://www.rossmanchance.com/applets/Dotplot.html

 Find out more about Tornado Vortex Signatures (TVS) at

http://en.wikipedia.org/wiki/Tornado_vortex_signature

 More information about the data in the TVS datasets can be found here:

http://www.ncdc.noaa.gov/swdiws/csv/nx3tvs

 There is an R package to access data directly from the SWDI. Find out more at

http://cran.r-project.org/web/packages/rnoaa/vignettes/swdi_vignette.html

 The complete NEXRAD radar data archive can be accessed at

http://www.ncdc.noaa.gov/nexradinv/

 Comprehensive documentation for the pastecs package, which does a lot more than

just descriptive statistics, can be accessed from this location: http://cran.r-

project.org/web/packages/pastecs/pastecs.pdf

https://statistics.laerd.com/statistical-guides/descriptive-inferential-statistics.php
https://statistics.laerd.com/statistical-guides/descriptive-inferential-statistics.php
http://study.com/academy/lesson/what-is-descriptive-statistics-examples-lesson-quiz.html
http://study.com/academy/lesson/what-is-descriptive-statistics-examples-lesson-quiz.html
http://www.rossmanchance.com/applets/Dotplot.html
http://en.wikipedia.org/wiki/Tornado_vortex_signature
http://www.ncdc.noaa.gov/swdiws/csv/nx3tvs
http://cran.r-project.org/web/packages/rnoaa/vignettes/swdi_vignette.html
http://www.ncdc.noaa.gov/nexradinv/
http://cran.r-project.org/web/packages/pastecs/pastecs.pdf
http://cran.r-project.org/web/packages/pastecs/pastecs.pdf

 41

1.6 More Ways to Acquire and Inspect Data

Objective

Before you can manipulate and analyze data, first you have to go get it and load it into

memory in R. The purpose of this section is to introduce you to some techniques for

acquiring data and loading it into data structures in R for further analysis. You will:

 Learn how to open a file on your local machine

 Learn how to retrieve data that is accessible on the web using a URL

 Learn how to retrieve data that is stored in Google Docs (using RCurl)

 Understand why it's important to be aware of data types and data structures as

you're acquiring data from different kinds of sources

 Be introduced to helpful utilities like aggregate, paste, and the practice of casting

between data types

 Learn where and how to acquire various kinds of government, political, sports,

weather, and news data

Files on Your Local Machine

One of the most common scenarios you will encounter is that you have your data stored on

your local machine, and you need to load it into R so you can manipulate and analyze it. The

most common commands you will use to navigate around your machine, find files, and load

them are getwd(), setwd(), dir(), read.csv(), read.table(), head() and str().

Central to these commands is the concept of the working directory. Basically, R can only be

pointing to one directory on your machine at any given time. If I want to find out which

directory R is looking at right now and then examine the contents, I can "get my working

directory" by typing getwd() and then find out what's in that directory by typing dir():

> getwd()

[1] "C:/Users/Nicole/Documents"

> dir()

 [1] "344-labs-grading-fall2012.doc" "3dtco_v3 (Autosaved).csv"

42

 [3] "Adobe" "AlienFX"

 [5] "Alienware TactX" "ALLMYEDGES.txt"

 [7] "ALLMYNODES.txt" "Apr10_KayakoInvoice.pdf"

 [9] "Avery_Extenci.pdf" "berente-notes.doc"

[11] "Bluetooth Exchange Folder" "Bluetooth Folder"

[13] "CSSBB.pe" "CyberLink"

[15] "desktop.ini" "Downloads"

[17] "EasleyKleinberg_NetworksBook.pdf" "EastPrussiaWar41-45.pdf"

[19] "GitHub" "Grimshaw_Presentation.pdf"

Without changing my working directory, I can access the contents of any one of these files. I

notice that there is one CSV file in the top row, so I'll try opening that to see what's inside. I

use the read.csv() command because I know it's a CSV file. I'm also going to store my

entire file in a variable that I will call temp (short for "temporary" because I'm probably not

going to use this variable after I poke around the file a little bit). After I read the file, I'll take

a look at the first six lines of the file using head and then ask R what data structures it has

assigned to each variable using str:

> temp <- read.csv("3dtco.csv")

> head(temp)

 group subsystem product priority reltco satis customiz

1 1 Database Oracle Highest 0.9985 0.978 0.000

2 1 Database Oracle Moderate 0.9997 0.933 0.000

3 1 Database Oracle Lowest 1.0000 0.927 0.000

4 2 Database IBM DB2 Highest 0.5739 0.782 0.196

5 2 Database IBM DB2 Moderate 0.5752 0.760 0.173

6 2 Database IBM DB2 Lowest 0.5754 0.768 0.159

> str(temp)

'data.frame': 39 obs. of 7 variables:

 $ group : int 1 1 1 2 2 2 3 3 3 4 ...

 $ subsystem: Factor w/ 4 levels "AM/OSM","CMES",..: 3 3 3 3 3 3 2 2 2 2 ...

 $ product : Factor w/ 13 levels "IBM DB2","IBM Maximo",..: 10 10 10 1 1 1

3 3 3 11 ...

 $ priority : Factor w/ 3 levels "Highest","Lowest",..: 1 3 2 1 3 2 1 3 2 1

 $ reltco : num 0.999 1 1 0.574 0.575 ...

 $ satis : num 0.978 0.933 0.927 0.782 0.76 0.768 0.9 0.816 0.754 0.7

 $ customiz : num 0 0 0 0.196 0.173 0.159 0 0.084 0.146 0.2 ...

 43

The head and str commands tell me complementary information. For example, I know

from str that there are 7 variables, and I know from head that the names of these variables

are group, subsystem, product, priority, reltco, satis, and customiz. I can also

find out the variable names from str, but str gives me even more information - it tells me

the data type for each of the variables. Let's say we want to find the average reltco for

each subsystem. (This stands for "relative total cost of ownership." It's the total cost of

ownership of a product relative to other comparable choices, which allows for more

accurate within-group comparisons.) The subsystem variable is a factor with 4 levels, each

of which refers to a software subsystem at a major organization. AM/OSM refers to an asset

management system, where information is stored to track equipment and computers. CMES

refers to an internal message bus, which is basically an application that helps other software

packages communicate with one another. DPMS is a data processing management system,

and Database is a database. Fortunately, reltco is a number, and we can compute averages

of numbers. But how do we split up our data set in terms of which subsystem each row is

associated with? In R, there are many different ways to do things, so don't think that this is

the only way to do it... but I like using aggregate like this. I underlined each of the three

arguments that are being passed to the aggregate command. (When you type this in,

please don't try to type in the underlines or the code won't work!)

> aggregate(reltco~subsystem, data=temp, FUN=mean)

 subsystem reltco

1 AM/OSM 0.5476667

2 CMES 0.6475000

3 Database 0.7871167

4 DPMS 0.6330000

How you say this in English is: "I want to aggregate the reltco variable by subsystem,

from the data set named temp, using the mean function." The first one tells R to split up the

reltco variable into groups according to the value of subsystem. The second argument

specifies that these values will come from the data set called temp, and the third argument

says to apply the function mean to the groups.

You can use all sorts of different functions in aggregate. Here are a few examples. Notice

how some of the functions operate on the complete list of reltco values, whereas other

44

functions operate on the aggregations themselves. The first example below simply lists the

contents of the aggregated data set. The second example computes the length of each list

that is returned (meaning, it will tell you how many data points are in each aggregation). The

third example adds up each of the lists, using the sum function. The fourth example tells us

whether each value is missing (or not) using is.na (which stands for "is not available"). This

would be a good way to figure out whether there is some pattern in your missing data.

> aggregate(reltco~subsystem, data=temp, FUN=list)

 subsystem reltco

1 AM/OSM 1.0000, 1.0000, 1.0000, 0.5746, 0.5746, 0.5746, 0.0684, 0.0684, 0.0684

2 CMES 0.90, 0.96, 1.00, 0.67, 0.72, 0.80, 0.48, 0.55, 0.60, 0.32, 0.37, 0.40

3 Database 0.9985, 0.9997, 1.0000, 0.5739, 0.5752, 0.5754

4 DPMS 1.000, 1.000, 1.000, 0.760, 0.776, 0.800, 0.520, 0.540, 0.600, 0.200,

0.200, 0.200

> aggregate(reltco~subsystem, data=temp, FUN=length)

 subsystem reltco

1 AM/OSM 9

2 CMES 12

3 Database 6

4 DPMS 12

> aggregate(reltco~subsystem, data=temp, FUN=sum)

 subsystem reltco

1 AM/OSM 4.9290

2 CMES 7.7700

3 Database 4.7227

4 DPMS 7.5960

> aggregate(reltco~subsystem, data=temp, FUN=is.na)

 subsystem reltco

1 AM/OSM FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE

2 CMES FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,

FALSE

3 Database FALSE, FALSE, FALSE, FALSE, FALSE, FALSE

4 DPMS FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,

FALSE

CSV Files on the Web

There are many data files stored on the web, and fortunately these are easily accessible

from within the R environment if you know the URL where the data is stored. In Section

10.2.5 of "The Art of R Programming" by Matloff, there is a quick example that shows how

to access some data that is in the machine learning repository at the University of California

 45

Irvine (UCI). Before we access the data within R, just cut and paste this URL into the address

window of your web browser to browse the contents:

http://archive.ics.uci.edu/ml/machine-learning-

databases/echocardiogram/echocardiogram.data

It looks a lot like a CSV file. Here are the first 10 rows:

11,0,71,0,0.260,9,4.600,14,1,1,name,1,0

19,0,72,0,0.380,6,4.100,14,1.700,0.588,name,1,0

16,0,55,0,0.260,4,3.420,14,1,1,name,1,0

57,0,60,0,0.253,12.062,4.603,16,1.450,0.788,name,1,0

19,1,57,0,0.160,22,5.750,18,2.250,0.571,name,1,0

26,0,68,0,0.260,5,4.310,12,1,0.857,name,1,0

13,0,62,0,0.230,31,5.430,22.5,1.875,0.857,name,1,0

50,0,60,0,0.330,8,5.250,14,1,1,name,1,0

19,0,46,0,0.340,0,5.090,16,1.140,1.003,name,1,0

25,0,54,0,0.140,13,4.490,15.5,1.190,0.930,name,1,0

We can read the contents of the file into R as if it were a CSV file, following the code in

Matloff. But then, we will also use the str command to examine the structure of the data,

and then the head command to look at some of the values of the variables:

> uci <- "http://archive.ics.uci.edu/ml/machine-learning-databases/"

> uci <- paste(uci,"echocardiogram/echocardiogram.data",sep="")

> ecc <- read.csv(uci)

> str(ecc)

'data.frame': 132 obs. of 13 variables:

 $ X11 : Factor w/ 57 levels "",".03",".25",..: 18 16 54 18 27 14 50 18...

 $ X0 : Factor w/ 4 levels "","?","0","1": 3 3 3 4 3 3 3 3 3 4 ...

 $ X71 : Factor w/ 40 levels "","?","35","46",..: 30 12 17 14 26 19 17 4

...

 $ X0.1 : int 0 0 0 0 0 0 0 0 0 0 ...

 $ X0.260: Factor w/ 74 levels "","?","0.010",..: 65 50 47 26 50 42 59 60

...

 $ X9 : Factor w/ 93 levels "","?","0","10",..: 69 57 13 46 62 56 79 3

...

 $ X4.600: Factor w/ 106 levels "","?","2.32",..: 25 6 54 92 38 85 76 70 ...

 $ X14 : Factor w/ 48 levels "","?","10","10.5",..: 16 16 21 27 8 36 16

...

46

 $ X1 : Factor w/ 67 levels "","?","1","1.04",..: 48 3 37 60 3 52 3 11

...

 $ X1.1 : Factor w/ 32 levels "","?","0.140",..: 14 30 25 13 27 27 30 31

...

 $ name : Factor w/ 3 levels "","?","name": 3 3 3 3 3 3 3 3 3 3 ...

 $ X1.2 : Factor w/ 5 levels "","?","1","2",..: 3 3 3 3 3 3 3 3 3 3 ...

 $ X0.2 : Factor w/ 5 levels "","?","0","1",..: 3 3 3 3 3 3 3 3 3 4 ...

> head(ecc)

 X11 X0 X71 X0.1 X0.260 X9 X4.600 X14 X1 X1.1 name X1.2 X0.2

1 19 0 72 0 0.380 6 4.100 14 1.700 0.588 name 1 0

2 16 0 55 0 0.260 4 3.420 14 1 1 name 1 0

3 57 0 60 0 0.253 12.062 4.603 16 1.450 0.788 name 1 0

4 19 1 57 0 0.160 22 5.750 18 2.250 0.571 name 1 0

5 26 0 68 0 0.260 5 4.310 12 1 0.857 name 1 0

6 13 0 62 0 0.230 31 5.430 22.5 1.875 0.857 name 1 0

This is a data frame with 132 rows (observations), each containing 13 variables. Most of the

variables are factors, but one is an integer (int). However, we know that the third column

(labeled X71) is the age of each of the people who has received an echocardiogram in this

sample. What if we want to figure out the mean age of people in this sample?

> mean(ecc$X71)

[1] NA

Warning message:

In mean.default(ecc$X71) : argument is not numeric or logical:

returning NA

We can't do it. Why? Because we are trying to compute an average value for a factor, which

is essentially a categorical variable. It's almost like trying to calculate the average color of

M&Ms in one bag. But we know that there are ages stored in that column, and we know

that we should be able to compute an average. What we can do is cast these factors to

numerical values to compute the mean:

> mean(as.numeric(ecc$X71))

[1] 19.23485

 47

We're doing exactly the same thing as we did in the last statement, but now we're asking R

to treat the values for the variable X71 in the ecc data set as numbers. This is read as "give

me the mean of the values inside the variable X71, from the data set ecc, and treat them as

numbers."

Collect Your Own Data: Google Forms and Google Spreadsheets

Many people are now storing data in the cloud, for example, in a Google Spreadsheet. This

is a useful system to be familiar with because multiple people can edit the same document,

and see each others' changes in real time. So if you are part of a research or analysis team,

everyone can contribute to filling in the data, and everyone can access it in their R analysis

environment. Furthermore, you can use Google Forms to automatically populate a Google

Spreadsheet to analyze!

Creating a Google Form is ridiculously easy, however, you must have a Google account

before you connect to Google Drive at http://drive.google.com and begin. Once you're in

Drive, click on the red "Create" button in the top left corner of your screen, and select

"Form" in the dropdown list that appears. You will be prompted to create different types of

questions. When you are done, click "Done". Here is the quick test form I just created:

48

When you click "Send Form" you will see a text box containing a URL under "Link to Share" --

that's going to be the link you send to your respondents to collect data. When you click

"View Responses" in the top menu bar (circled in Figure X.2), it will bring you to the Google

Spreadsheet where your responses will automatically show up. This is the URL you should

copy and paste so you can access your data in R using RCurl (we'll step through that process

next!)

Analyze Your Own Data: Google Spreadsheets and RCurl

Buried within the list of CRAN packages available to download and utilize in R is a package

called RCurl. One of the functions RCurl allows you to do is request the contents of a URL,

process the contents in a way that lets you look at it, and ultimately stores the contents into

a variable in R. To demonstrate this, let’s walk through the example.

 49

First, open up an R environment and navigate to the dropdown menu titled Packages

(Windows) or Packages & Data (Mac). Click on Install Package(s)… (Windows) or

Package Installer (Mac). In the list of libraries, look for a library titled RCurl. Select it

and download it. (If you are a Mac user, remember to install RCurl’s dependencies by

checking the Install Dependencies box.) Now that RCurl is downloaded on your

computer, load it into R like this:

 library("RCurl")

If you get an error, check to make sure your quotation marks are in the right place (and

closed), and also be sure you are capitalizing both the R and C in RCurl.

For this example, we will use another Google Spreadsheet that already has data loaded into

it. This is the points spreadsheet for a class I taught in a previous semester. This is a really

long URL so the first thing we will do is piece it together using the paste command. (There is

no value in doing this OTHER than being able to type the URL in using smaller pieces on

multiple lines. Sometimes this is easier than trying to type a huge, long URL into R and not

being able to see the whole thing.)

url <- "https://docs.google.com/spreadsheet/pub?key="

url <- paste(url," 0AoVN55HxlNvKdHh1S2sxQzRkSHlzLW1kVjREVFh4Z2c", sep="")

url <- paste(url," &single=true&gid=0&output=csv",sep="")

Once you have the URL set up as a variable, you can use it to open the Google Spreadsheet

and make sure that the data is in the format you desire. We load the contents of our

spreadsheet into a variable that we decide to call spreadsheet.data using the getURL

command, and add in the argument ssl.verifypeer=FALSE just in case there are

permission problems that come from using the secure HTTP protocol, https.

> spreadsheet.data <- getURL(url,ssl.verifypeer=FALSE)

> str(spreadsheet.data)

 chr "who,what,when,points\nesquildf,RNG

Exponential,1/27/2014,2\nesquildf,RNG

Weibull,1/27/2014,1\nesquildf,RNG Triangular,1/27/2014"|

__truncated__

50

But here's the problem: all of our data came in as ONE character string, so we will find it

impossible to work with unless we create a data frame, somehow. Notice that it looks kind

of like a CSV file, and the first line is indeed a header containing our variable names: who,

what, when, points. But then you'll notice there are lots of "\n" in there too, which is the

code for "line feed" (indicating the end of a line in your data file). We need to 1) split that

looooong character string into individual lines, separated by the \n characters that we see,

and 2) then split those lines into individual values that correspond to each of our variables.

We can accomplish the first part using textConnection, and the second part using

read.csv - and lucky for us, this automatically gives us a data frame that we can use:

> points <- read.csv(textConnection(spreadsheet.data))

> str(points)

'data.frame': 422 obs. of 4 variables:

 $ who : Factor w/ 47 levels "ander3ad","ayersjc",..: 12 12 12 12

37 37 ...

 $ what : Factor w/ 91 levels "ABM Exploration",..: 78 81 80 72 78

81 80 ...

 $ when : Factor w/ 30 levels "1/27/2014","2/1/2014",..: 1 1 1 1 1 1

1 1 ...

 $ points: int 2 1 1 2 2 1 1 2 2 1 ...

> head(points)

 who what when points

1 esquildf RNG Exponential 1/27/2014 2

2 esquildf RNG Weibull 1/27/2014 1

3 esquildf RNG Triangular 1/27/2014 1

4 esquildf Output Analysis 1/27/2014 2

5 roseph RNG Exponential 1/27/2014 2

6 roseph RNG Weibull 1/27/2014 1

How would you figure out how many points roseph acquired over the course of the

semester?

 51

Accessing Real Repositories: APIs, JSON, and rjson

Often, data is not stored on the web but is accessible from the web. You just have to know

how to get it, and how to deal with the data format that you are served. It is not uncommon

for organizations to offer access to their databases if you know a little programming. They

will publish Application Programming Interfaces (or APIs) that provide you with objects and

methods to get to their data. Two common data formats are eXtensible Markup Language

(XML) and JavaScript Object Notation (JSON). This section covers the JSON format and how

to obtain data in JSON format through the R console, using the rjson package. (You can

explore XML on your own, if you like.) Be sure to install rjson first!

This example uses the Weather Underground API which is documented online at

http://www.wunderground.com/weather/api/. To use it, you first have to register to gain

access and get what's called an "API Key". Services like this often want to make sure that

you are a real human, and not just a bot who will overload their system with requests for

information. Where it says KEY is where I used my personal API key:

> json.file <-

"http://api.wunderground.com/api/KEY/conditions/q/CA/San_Francisco.json"

> json.data <- fromJSON(paste(readLines(json.file), collapse=""))

> str(json.data)

List of 2

 $ response :List of 3

 ..$ version : chr "0.1"

 ..$ termsofService: chr

"http://www.wunderground.com/weather/api/d/terms.html"

 ..$ features :List of 1

 $ conditions: num 1

 $ current_observation:List of 56

 ..$ image :List of 3

 $ url : chr "http://icons.wxug.com/graphics/wu2/logo_130x80.png"

 $ title: chr "Weather Underground"

 $ link : chr "http://www.wunderground.com"

 ..$ display_location :List of 12

 $ full : chr "San Francisco, CA"

 $ city : chr "San Francisco"

 $ state : chr "CA"

 $ state_name : chr "California"

52

 $ country : chr "US"

 $ country_iso3166: chr "US"

 $ zip : chr "94101"

 $ magic : chr "1"

 $ wmo : chr "99999"

 $ latitude : chr "37.77500916"

 $ longitude : chr "-122.41825867"

 $ elevation : chr "47.00000000"

 ..$ observation_location :List of 8

 $ full : chr "NEMA, San Francisco, California"

 $ city : chr "NEMA, San Francisco"

 $ state : chr "California"

The fromJSON command reads input in JSON format and automatically converts it into a

data structure that is accessible from within R. This is a complicated data structure that

consists of lists embedded within other lists! Here are some examples of 1) how to access

the variables within this data structure created from the JSON data that we acquired, and 2)

how to determine the data type for each variable:

> json.data$current_observation$display_location$latitude

[1] "37.77500916"

> is.numeric(json.data$current_observation$display_location$latitude)

[1] FALSE

> is.character(json.data$current_observation$display_location$latitude)

[1] TRUE

> json.data$current_observation$observation_time

[1] "Last Updated on August 16, 12:35 PM PDT"

> is.character(json.data$current_observation$observation_time)

[1] TRUE

> json.data$current_observation$temperature_string

[1] "65.8 F (18.8 C)"

> is.character(json.data$current_observation$temperature_string)

[1] TRUE

> json.data$current_observation$temp_f

[1] 65.8

> is.character(json.data$current_observation$temp_f)

[1] FALSE

> is.numeric(json.data$current_observation$temp_f)

[1] TRUE

 53

Another very useful capability is to compress individual pieces of the JSON-formatted data

into smaller data structures that you can manipulate more easily. For example, if we want to

capture only the 8 elements of

 json.data$current_observation$observation_location

into a list, we can do this. Remember, don't type the carets or the plus signs if you are trying

to reproduce this in your own R session.

> obs.location <-

rep(NA,length(json.data$current_observation$observation_location))

> for (n in 1:length(json.data$current_observation$observation_location)) {

+ obs.location[n] <- json.data$current_observation$observation_location[[n]]

+ }

> obs.location

[1] "NEMA, San Francisco, California" "NEMA, San Francisco"

[3] "California" "US"

[5] "US" "37.776077"

[7] "-122.417542" "102 ft"

Now you can refer to individual elements of obs.location - for example, the station elevation

can be directly retrieved by calling the last element of the list:

> obs.location[8]

[1] "102 ft"

Note that you can also cut and paste the entire API call into the address box in your

browser. As long as you've typed it in correctly and used a valid API key, you should see the

text of the entire JSON object that's been extracted from the Weather Underground

database. This is a great way to test and see whether your API call is working, if your R code

using fromJSON is giving you an error.

Lots of data repositories have APIs that allow you to retrieve data in JSON format, and using

the rjson package and the fromJSON command, you should be able to bring any of this

54

data into R for further analysis. Here are some repositories that might have useful

information for you to try acquiring.

 Votes, Membership Lists, Bills, and Schedules from the US Congress:

http://developer.nytimes.com/docs/read/congress_api/congress_api_examples

 Opensecrets.org (Center for Responsive Politics):

https://www.opensecrets.org/resources/create/api_doc.php

 Federal Communications Commission, TV Station Profiles and Public Inspection

Files: https://stations.fcc.gov/developer/

 New York Times API: http://developer.nytimes.com/docs

 There are more examples of government, political, social, weather, sports, and news

APIS at http://blog.visual.ly/data-sources/

Now What?

You now have the background and experience to try playing with any of the data files at

http://archive.ics.uci.edu/ml/machine-learning-databases/, or to explore using conditional

formatting of Google Spreadsheets... where you can do cool things like turn boxes different

colors based on the data in the cells, or selectively execute mathematical operations on the

data. There are tons of opportunities here. Get started with these examples:

 http://thejournal.com/articles/2014/03/19/extending-conditional-formatting-in-

google-sheets-using-dynamic-date-calls.aspx

 See the most recent YouTube videos on conditional formatting by going to

https://www.youtube.com/results?search_query=conditional+formatting+google+d

ocs&filters=year&search_sort=video_avg_rating

http://developer.nytimes.com/docs/read/congress_api/congress_api_examples
https://www.opensecrets.org/resources/create/api_doc.php
https://stations.fcc.gov/developer/
http://developer.nytimes.com/docs
http://blog.visual.ly/data-sources/
http://archive.ics.uci.edu/ml/machine-learning-databases/
http://thejournal.com/articles/2014/03/19/extending-conditional-formatting-in-google-sheets-using-dynamic-date-calls.aspx
http://thejournal.com/articles/2014/03/19/extending-conditional-formatting-in-google-sheets-using-dynamic-date-calls.aspx
https://www.youtube.com/results?search_query=conditional+formatting+google+docs&filters=year&search_sort=video_avg_rating
https://www.youtube.com/results?search_query=conditional+formatting+google+docs&filters=year&search_sort=video_avg_rating

 55

1.7 PDFs and CDFs

When an outcome is random, how do you mathematically describe the scope of all

possibilities? You can do this by characterizing the distribution of all those possibilities as a

probability density function (PDF). The PDF illustrates: how densely are your observations

packed around a particular value? The cumulative distribution function (or CDF)

complements the PDF, and provides additional information. It shows what proportion of all

observations will be less than or equal to a certain value. When you think of the normal

distribution as a bell curve, you're thinking about the PDF.

> x <- seq(-5,5,0.1) # Generate a sequence of x-values from -5 to +5

> par(mfrow=c(2,1)) # Plot them as 2 rows in 1 column

> plot(x,dnorm(x,0,1.5),type="l",main="Normal PDF")

> plot(x,pnorm(x,0,1.5),type="l",main="Normal CDF")

56

A probability density just tells you, for any given x-value, the long-run relative frequency of

seeing a particular outcome occur. The CDF is the integral of the PDF:

Because integration means to add up all the areas underneath a function, we can think

about it this way. Pretend you are a tiny person standing in front of the normal PDF. The

normal PDF is on a stage, and there's a stage curtain hanging on rings along the top edge of

the graph. We're going to start at x=-4 and walk along the x-axis towards the right, all the

way to x=+4. As we do, we're going to hold the curtain and pull it more and more closed as

we walk. How much of the area under the normal PDF are we covering as we walk by? Let's

visually integrate to construct the CDF:

 When you just start walking, and you go from x=-4 to x=-2, you're only capturing a

tiny bit of the area under the normal PDF. The y-values on the CDF start at 0,

because you have not covered any of the area under the normal PDF yet. The y-

value at x=-2 will be about 0.16, since that's how much area we have covered by the

time we have walked to x=-2.

 As you walk from x=-2 to x=0, you're capturing the area at a faster and faster rate.

By the time you get to x=0, you have captured 50% of the area under the normal

PDF. The slope on the normal CDF thus increases to reflect that we're capturing the

area faster. The y-value of the normal CDF at x=0 is 0.5, to reflect that we have

captured half the area.

 As we keep walking to the right, from x=0 to x=+2, we are capturing area at a slower

rate. The slope of the CDF begins to decrease. When we get to x=+2, the y-value on

the CDF will be 0.84, reflecting that we have covered 84% of the area under the

normal PDF by this point.

 Finally, as we walk from x=+2 to x=+4, we are adding area at a much, much slower

rate. The slope on the normal CDF decreases to reflect that. By the time we've

 57

walked all the way across the stage, we have covered 100% of the area under the

normal PDF, and the y-value on the normal CDF levels off at 1.0.

The probability density function, then, represents the rate of change of the cumulative

distribution. It is the derivative of the CDF. If you know the equation of either the PDF or the

CDF, you can determine the equation for the other function by integrating or differentiating,

respectively.

You can visually differentiate a CDF by pretending you're a tiny person walking from the

leftmost position on the x-axis to the rightmost position. All you have to do to create a PDF

is to eyeball the slope of the CDF, and plot that value on the y-axis of the PDF you are

creating. The area under a PDF is, by definition, 1. The range of values on the y-axis of the

CDF is always 0.0 to 1.0. This is a very convenient property that enables us to create inverse

transform equations to generate random numbers from any target distribution we want.

Fortunately there are several functions built into R which make it super easy to work with

PDFs and CDFs. All you need to know is the value of the parameters that uniquely specify

any given distribution. The normal distribution is fully specified by its mean (which shows

where the center of the distribution is at) and standard deviation (which shows how spread

out the values are).

R Command What it does

rnorm(n,mean,sd) Generates n random variates selected from a normal

distribution with specified mean and standard deviation
dnorm(x,mean,sd) Plots the PDF from a collection of values x (which represent

various points along the x-axis) centered at the specified

mean, and with the specified standard deviation
pnorm(x,mean,sd) Plots the CDF from a collection of values x (which represent

various points along the x-axis) centered at the specified

mean, and with the specified standard deviation
qnorm(area,mean,sd) Finds the quantiles, or Inverse CDF. If you know an area

under the normal PDF to the left of a particular x-value, this

command helps you find the number of standard deviations

58

above or below the mean where the x-value that forms that

boundary sits. (In conjunction with a random number

generator, this function can you generate random numbers

that were pulled from a distribution with characteristics

that you specify.)

Common Distributions

There are PDF and CDF functions for many common distributions in R. Each of them works

just like rnorm, dnorm, pnorm, and qnorm, only you need to know the parameters that

uniquely specify that other type of distribution. For example, the exponential distribution is

uniquely specified by just one parameter: the mean of the distribution. Here are several (but

not all!) of the distributions built into R that you can use:

Distribution R Functions

Beta pbeta, qbeta, dbeta, rbeta
Binomial pbinom, qbinom, dbinom, rbinom
Cauchy pcauchy, qcauchy, dcauchy, rcauchy
Chi-Square pchisq, qchisq, dchisq, rchisq
Exponential pexp, qexp, dexp, rexp
F pf, qf, df, rf
Gamma pgamma, qgamma, dgamma, rgamma
Geometric pgeom, qgeom, dgeom, rgeom
Hypergeometric phyper, qhyper, dhyper, rhyper
Logistic plogis, qlogis, dlogis, rlogis
Log Normal plnorm, qlnorm, dlnorm, rlnorm
Negative Binomial pnbinom, qnbinom, dnbinom, rnbinom
Normal pnorm, qnorm, dnorm, rnorm
Student's t pt, qt, dt, rt
Uniform punif, qunif, dunif, runif
Weibull pweibull, qweibull, dweibull, rweibull

 59

Other Resources

 There is an amazing list of many probability distributions on Wikipedia at

http://en.wikipedia.org/wiki/List_of_probability_distributions. In addition, each

statistical distribution (e.g. normal, uniform, Weibull) has its own Wikipedia page

that includes PDFs, CDFs, and a wealth of other information about that distribution.

These are fantastic pages and I encourage you to get to know them.

 There is a fantastic interactive PDF/CDF explorer that you NEED to play with at

http://www.che.utah.edu/~tony/course/material/Statistics/18_rv_pdf_cdf.php

 A comparison of qnorm() and pnormGC() is located here: http://cran.r-

project.org/web/packages/tigerstats/vignettes/qnorm.html

http://en.wikipedia.org/wiki/List_of_probability_distributions
http://www.che.utah.edu/~tony/course/material/Statistics/18_rv_pdf_cdf.php
http://cran.r-project.org/web/packages/tigerstats/vignettes/qnorm.html
http://cran.r-project.org/web/packages/tigerstats/vignettes/qnorm.html

60

1.8 Z-Score Problems with the Normal Model

Objective

Lots of data in the world is naturally distributed normally, with most of the values falling

around the mean, but with some values less than (and other values greater than) the mean.

A lot more data is distributed normallyWhen you have data that is distributed normally, you

can use the normal model to answer questions about the characteristics of the entire

population. That's what we'll do in this chapter. You will learn about:

 The N notation for describing normal models

 What z-scores mean

 The 68-95-99.7 rule for approximating areas under the normal curve

 How to convert each element of your data set into z-scores

 How to answer questions about the characteristics of the entire population

The Normal Model and Z-Scores

The normal model provides a way to characterize how frequently different values will show

up in a population of lots of values. You can describe a normal model like this:

Here's what you SAY when you see this: "The normal model with a mean of and a

standard deviation of ." There is no way for you to mathematically break this statement

down into something else. It's just a shorthand notation that tells us we're dealing with a

normal model here, here are the two values that uniquely characterize the shape and

position of that bell curve. To produce that bell curve requires an equation (called the

probability density function or pdf):

 61

This may look complicated at first, but it's not. The left hand side says that the normal model

is a function (f) of three variables: x, , and . Which makes sense: we have to plot some

value on the vertical (y) axis based on lots of x-values that we plug into our equation, and

the shape of our bell curve is going to depend on the mean of the distribution (which tells

us how far to the right or left on the number line we should slide our bell curve) and the

standard deviation (which tells us how fat or skinny the bell will be... bigger standard

deviation = more dispersion in the distribution = fatter bell curve). When the mean is 0 and

the standard deviation is 1, this is referred to as the standard normal model. It looks like

this, and was produced by the code below.

x <- seq(-4,4,length=500)

y <- dnorm(x,mean=0,sd=1)

plot(x,y,type="l",lwd=3,main="Standard Normal Model: N(0,1)")

The first line just produces 500 x values for us to work with. The second line creates 500 y

values from those x values, produced by the dnorm command (which stands for "density of

the normal model"). Because dnorm contains the equation of the normal model, we don't

actually have to write out the whole equation. Now we have 500 (x,y) pairs which we can

use to plot the standard normal model, using a type of "l" to make it a line, and a line width

62

(using lwd=3) to make it a little thicker (and thus easier to see) than if we used a line width

of only one pixel.

The z-score tells us how many standard deviations above or below the mean a particular x-

value is. You can calculate the z-score for any one of your x-values like this:

The z-score describes what the difference is between your data point (x) and the mean of

the distribution (), scaled by how skinny or fat the bell curve is (). The z-score of the mean

of your distribution, then, will be zero - because if x equals the mean, x - will be zero and

the z-score will be zero. So, ALWAYS:

 Positive z-scores are associated with data points that are ABOVE the mean

 Negative z-scores are associated with data points that are BELOW the mean

Consider an example where we're thinking about the distribution of several certification

exam scores: the ASQ Certified Six Sigma Black Belt (CSSBB) exam from December 2014.

Let's say, hypothetically, that we know the population of all scores for this exam can be

described by the normal model with a mean of 78 and a standard deviation of 5:

There are a LOT of things we know about the test scores simply by knowing what model

represents the data. For example:

 The test score that is one standard deviation below the mean is 73 (which we get by

taking the mean, 78, and subtracting one standard deviation of 5). This test score of

x=73 corresponds to a z-score of -1.

 The test score that is one standard deviation above the mean is 83 (which we get by

taking the mean, 78, and adding one standard deviation of 5). This test score of

x=83 corresponds to a z-score of +1.

 63

 The test score that is two standard deviations below the mean is 68 (which we get

by taking the mean, 78, and subtracting two times the standard deviation of 5,

which is 10). This test score of x=68 corresponds to a z-score of -2.

 The test score that is two standard deviations above the mean is 88 (which we get

by taking the mean, 78, and adding two times the standard deviation of 5, which is

10). This test score of x=88 corresponds to a z-score of +2.

 The test score that is three standard deviations below the mean is 63 (which we get

by taking the mean, 78, and subtracting three times the standard deviation of 5,

which is 15). This test score of x=63 corresponds to a z-score of -3.

 The test score that is three standard deviations above the mean is 93 (which we get

by taking the mean, 78, and adding three times the standard deviation of 5, which is

15). This test score of x=93 corresponds to a z-score of +3.

Let's say YOU scored an 85. (There's no way to actually know this, because the certification

administrators don't reveal any information about the CSSBB exam beyond whether you

passed it or not.) What's your z-score? It's easy to calculate:

A z-score of +1.4 means that your test score was 1.4 standard deviations above the mean of

78. There is also other information that we can find out by knowing what normal model

represents the scores of all test-takers.

For example, we know that a very tiny portion of the test-takers (in fact, only 0.3%) scored

either above a 93, or below a 63. We can also show that your score of 85% was better than

91.9% of all test-takers. But how??

64

The 68-95-99.7 Rule

The area under the normal curve reflects the probability that an observation will fall within

a particular interval. Area = Probability! There are a couple simple things that you can

memorize about the normal model that will help you double-check any problem solving you

do with it. Called the empirical rule, this will help you remember how much of the area

under the bell curve falls between different z-scores. First, think about how the normal

model is symmetric... if you fold it in half (from left to right) at the mean, the curve is a

mirror image of itself. The right half of the bell is exactly the same shape and size as the left

half. (The code to produce these charts is below the images.)

url <- "https://raw.githubusercontent.com/NicoleRadziwill/"

url <- paste(url, "R-Functions/master/shadenorm.R", sep="")

Note: You need to download sourceHttps.R before the next two

lines will work. Find out how in the Appendix on sourceHttps!

source("sourceHttps.R")

source_https(url)

par(mfrow=c(1,2))

shadenorm(between=c(-4,0),color="black")

shadenorm(between=c(0,4),color="black")

Because the total area under the normal curve is 100%, this also means that 50% of the area

under the curve is to the left of the mean, and the remaining 50% of the area under the

curve is to the right of the mean. The 68-95-99.7 Empirical Rule provides even more

information:

 65

 68% of your observations will fall between one standard deviation below the mean

(where z = -1) and one standard deviation above the mean (where z = +1)

 95% of your observations will fall between two standard deviations below the mean

(where z = -2) and two standard deviations above the mean (where z = +2)

 99.7% (or pretty much ALL!) of your observations will fall between three standard

deviations below the mean (where z = -3) and three standard deviations above the

mean (where z = +3)

Here's what those areas look like. You read "P[-1 < z < 1]" as "the probability that the z-score

will fall between -1 and +1".

par(mfrow=c(1,3)) # set up the plot area with 1 row, 3 columns

shadenorm(between=c(-1,+1),color="darkgray")

title("P[-1 < z < 1] = 68%")

shadenorm(between=c(-2,+2),color="darkgray")

title("P[-2 < z < 2] = 95%")

shadenorm(between=c(-3,+3),color="darkgray")

title("P[-3 < z < 3] = 99.7%")

These graphs show that:

66

 There is a probability of 68% that an observation will fall between one standard

deviation below the mean (where z = -1) and one standard deviation above the

mean (where z = +1).

 There is a probability of 95% that an observation will fall between two standard

deviations below the mean (where z = -2) and two standard deviations above the

mean (where z = +2)

 There is a probability of 99.7% that an observation will fall between three standard

deviations below the mean (where z = -3) and three standard deviations above the

mean (where z = +3)

When data are distributed normally, there is only a VERY TINY (0.3%!) chance that an

observation will be smaller than whatever value is three standard deviations below the

mean, or larger than three standard deviations above the mean! Nearly all values will be

within three standard deviations of the mean. That's one of the reasons why you can use

the z-score for a particular data point to figure out just how common or uncommon that

value is.

The chart for the 68-95-99.7 rule as presented on Wikipedia is shown on the next page (it's

from http://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule). From the 68-

95-99.7 rule, we can estimate what proportion of the population will have scored below our

certification score of 85, compared to the normal model with the mean of 78 and the

standard deviation of 5, or N(78,5).

http://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule

 67

The 68-95-99.7 Rule is Great, But Prove It To Me

When you integrate a function, you are computing the area under the curve. So if we

integrate the equation for the normal model between z=-1 and z=+1, we should get an area

of 68%. Let's do that. First we take the equation of the normal probability distribution

function:

Then simplify it using the standard normal model of N(0,1) which is centered at a mean ()

of 0, with a standard deviation () of 1. Meaning, plug in 0 for and 1 for . You get:

68

Now, let's integrate it from a z-score of -1 to a z-score of +1 to find the area between those

left and right boundaries. We can pull the first fraction outside the integral since it's a

constant:

How do we integrate this expression? My solution (since I'm not a mathematician) is to look

at a table of integrals, or use the Wolfram Alpha computational engine at

http://www.wolframalpha.com. All we need to do is figure out how to evaluate the stuff on

the right side of the integral, then multiply it by one over the square root of 2. I'll show you

what I typed into Wolfram to make it determine the integral for me:

The evaluated integral contains something called erf, the "error function". This is a special

function that (fortunately) Wolfram knows how to evaluate as well. Let's plug the result

from evaluating this integral back into our most recent expression. That vertical bar on the

right hand side means "evaluate the error function of x over the square root of 2 using x=1,

 69

then subtract off whatever you get when you evaluate the error function of x over the

square root of 2 using x=-1".

We can simplify all the stuff on the left hand side of erf because they are all constants... it

reduces to a very nice and clean 1/2. So we just need to take the difference between

evaluating the error function at x=1, and evaluating the error function at x=-1, and then

chop it in half to get our answer. Wolfram will help:

All we had to do was type in erf(1/sqrt(2)) and Wolfram evaluates the right hand side

of our expression at x=1, giving us approximately 0.683. If we do this again using x=-1, we'll

get a value of -0.683. Now let's plug it all in together:

The area under the standard normal curve between -1 and +1 is 0.683, or 68.3%... nearly the

same value that we get from our "rule of thumb" 68-95-99.7% rule! You can try this same

process to determine the area under the normal between -2 and +2, or between -3 and +3,

to further confirm the empirical 68-95-99.7% rule for yourself.

70

Calculating All of the Z-Scores for a Data Set

There may come a time where you would like to easily compute the z-scores for each

element in a data set that's normally (or nearly normally) distributed. You could take each

value individually and use this equation to compute the z-scores one by one:

Or you could just enter your data set into R:

scores <- c(81, 91, 78.5, 73.5, 66, 83.5, 76, 81, 68.5, 83.5)

And then have it compute all the z-scores for you at once, using the scale command:

> scale(scores)

 [,1]

 [1,] 0.36689321

 [2,] 1.70105036

 [3,] 0.03335393

 [4,] -0.63372464

 [5,] -1.63434250

 [6,] 0.70043250

 [7,] -0.30018536

 [8,] 0.36689321

 [9,] -1.30080321

[10,] 0.70043250

Do these values make sense? Let's check. The mean of our test scores is around 78, so all

the scores above 78 should have positive z-scores, and all the scores below 78 should have

negative z-scores. We see by examining the original data that scores 1, 2, 3, 6, 8, and 10 are

all above the mean, and so should have z-scores that are positive. The output from scale

confirms this expectation. We can also see that the third value of 78.5 is just slightly above

the mean, so its z-score should be very tiny and positive. It is, at 0.0333.

 71

Using the Normal Model to Answer Questions About a Population

For this collection of examples, we'll use real exam scores from a test I administered last

year. You can get my data directly from GitHub as long as you have the RCurl package

installed. Here's what you do with it:

library(RCurl)

url <- "https://raw.githubusercontent.com/NicoleRadziwill"

url <- paste(url,"/Data/master/compare-scores.csv", sep="")

data <- getURL(url,ssl.verifypeer=FALSE)

all.scores <- read.csv(textConnection(data))

If the code above has successfully found and retrieved the data, you should be able to see

the semester when the students took the test (in the when variable) and the raw scores

(stored in the score variable) when you use head. There are 96 observations in this

dataset.

> head(all.scores)

 when score

1 FA14 45.0

2 FA14 55.0

3 FA14 42.5

4 FA14 37.5

5 FA14 30.0

6 FA14 47.5

First, we should check and see whether the scores are approximately normally distributed.

We can do this by plotting a histogram, and by doing a QQ plot which (if are scores are

nearly normal) should show all of our data points nearly along the diagonal. QQ plots and

tests for normality are covered more extensively in Chapter 2.8.

72

par(mfrow=c(1,2)) # set up the plot area with 1 row, 2 columns

hist(all.scores$score)

qqnorm(all.scores$score)

qqline(all.scores$score)

The histogram is skewed a little to the right, but it's nearly normal, so we can proceed. To

figure out what normal model can be used to represent the data, we need to know the

mean and standard deviation of the scores:

> mean(all.scores$score)

[1] 47.29167

> sd(all.scores$score)

[1] 9.309493

Rounding a bit, we should be able to use N(47.3,9.3) (or "the normal model with a mean of

47.3 and a standard deviation of 9.3") to represent the distribution of all our scores. Using

this model, we can answer a lot of questions about what the population of test-takers looks

like. Looking at the histogram, we can see that a score of 50 is about in the middle. What

proportion of students got below a 50? We can answer this question by determining the

area under N(47.3,9.3) to the LEFT of x=50. It looks like this:

 73

shadenorm(below=50,justbelow=TRUE,color="black",mu=47.3,sig=9.3)

Since the mean is 47.3, we know that a test score of 50 is TO THE RIGHT OF THE MEAN. The

z-score associated with 50 is going to be positive. How positive will it be? Well, since the

standard deviation is 9.3, we know that the test score which is one standard deviation above

the mean will be 47.3 + 9.3 = 56.6. Our test score of 50 is just a little bit above the mean, so

we can estimate our z-score at +0.3 or +0.4. That means the area under the normal to the

left of x=50 will be greater than 50%, but not much greater than 50%. Even before we do the

problem, we can estimate that our answer should be between 55% and 65%.

To definitively determine the area below the curve to the left of x=50, we use the pnorm

function in R. The pnorm function ALWAYS tells us the area under the normal curve to the

LEFT of a particular x value (remember this!!) So we can ask it to tell us the area to the left

of x=50, given a normal model of N(47.3,9.3):

> pnorm(50,mean=47.3,sd=9.3)

[1] 0.6142153

We can predict that 61.4% of the test-takers in the population received a score greater than

50%. This means even though our data set only includes students from a couple of

74

semesters of my class, we've found a way to use this sample to determine what the scores

from the entire population of students who took this test must be! As long as my students

are representative of the larger population, this should be a pretty good bet.

(But what if you don't have R? Well, don't worry, you can still use "Z Score Tables" or Z Score

Calculators to figure out the area underneath the normal curve. Z Score Tables are available

in the back of most statistics textbooks, and tables and calculators are also available online.

Let's do the same problem we just did, AGAIN, using tables and calculators.)

Let's say we had to do this problem with a Z Score Table. First Rule of Thumb: ALWAYS PICK

A Z SCORE TABLE THAT HAS A PICTURE.

 The table at http://www.stat.ufl.edu/~athienit/Tables/Ztable.pdf HAS a picture. Use

this kind of table!

 The table at http://www.utdallas.edu/dept/abp/zscoretable.pdf DOES NOT HAVE a

picture. DO NOT USE these kind of tables.

It's best to use Z Score Tables that have pictures so you can match the picture representing

the area under the curve you're trying to find with the picture. To find the area under the

curve, you need a z-score. The z-score that corresponds with a test score of x=50 is

When we look at the picture we drew, we notice that the shaded portion is bigger than 50%

of the total area under the curve. When we look at the picture at the Z Score Table from

http://www.stat.ufl.edu/~athienit/Tables/Ztable.pdf, we notice that it does NOT look like

what we drew:

http://www.stat.ufl.edu/~athienit/Tables/Ztable.pdf
http://www.utdallas.edu/dept/abp/zscoretable.pdf
http://www.stat.ufl.edu/~athienit/Tables/Ztable.pdf

 75

This particular Z Score Table ONLY contains areas within the tails. The trick to using a Z Score

Table like this is to recognize that because the normal distribution is symmetric, the area to

the LEFT of z=+0.29 can be found by taking 100% of the area, and subtracting the area to the

LEFT of the z-score at z=-0.29 (what's in the area of the tail). Using the Z Score Table from

http://www.stat.ufl.edu/~athienit/Tables/Ztable.pdf, we look in the row containing z=-0.2,

and the column containing .09, because these add up to our computed z-score of 0.29. We

get an area of 0.3859. But we're looking for an area greater than 50% (which we know

because we drew a PICTURE!), so we take 1 - 0.3859 to get 0.6141, or 61.4%.

http://www.stat.ufl.edu/~athienit/Tables/Ztable.pdf

76

Let's say we don't have a Z Score Table handy, and we don't have R. What are we to do? You

can look online for a Z Score Calculator which should also give you the same answer. I

always use Wolfram. There are so many Z Score Calculators out there... and only about half

of them will give you the right answers. It's really sad! But Wolfram will give you the right

answer, and it also asks you to specify what area you're looking for using very specific

terminology. So I can ask Wolfram "What's the area under the normal curve to the left of

z=0.29?" like this:

The area is 0.614, or 61.4% - the same as we got from the Z Score Table and the pnorm

calculation in R.

 77

Let's Do Another Z Score Problem

Say, instead, we wanted to figure out what proportion of our students scored between 40

and 60. That means we want to find the area under N(47.4, 9.3) between x=40 and x=60. If

we draw it, it will look like this:

shadenorm(between=c(40,60),color="black",mu=47.3,sig=9.3)

To calculate this area, we'll have to take all the area to the left of 60 and subtract off all the

area to the left of 40, because pnorm and Z Score Calculators don't let us figure out "areas in

between two z values" directly. So let's do that. Graphically, we'll take the total area in the

left graph below, and subtract off the area of the right graph in the middle, which will leave

us with the area in the graph on the right:

78

par(mfrow=c(1,3))

shadenorm(below=60,justbelow=TRUE,color="black",mu=47.3,sig=9.3)

title("This Area")

shadenorm(below=40,justbelow=TRUE,color="black",mu=47.3,sig=9.3)

title("Minus THIS Area")

shadenorm(between=c(40,60),color="black",mu=47.3,sig=9.3)

title("Equals THIS Area")

We can do this very easily with the pnorm command in R. The first part finds all of the area

to the left of x=60, and the second part finds all of the area to the left of x=40. We subtract

them to find the area in between:

> pnorm(60,mean=47.3,sd=9.3) - pnorm(40,mean=47.3,sd=9.3)

[1] 0.6977238

We can also do this in Wolfram as long as we know how to ask for the answer:

 79

All of the methods give us the same answer: 69.7% of all the test scores are between x=40

and x=60. I would really have preferred that my class did better than this! Fortunately, these

scores are from a pre-test taken at the beginning of the semester, which means this

represents the knowledge about statistics that they come to me with. Looks like I have a

completely green field of minds in front of me... not a bad thing.

Let's Go Back to That Problem From the Beginning

So in the beginning of the chapter, we were talking about an example where WE scored an

85 on a certification exam where all of the test scores were normally distributed with

N(78,5). Clearly we did well, but we want to know: what percentage of all test-takers did we

score higher than? Now that we know about pnorm, this is easy to figure out, by drawing

shadenorm(below=85,justbelow=TRUE,color="black",mu=78,sig=5):

From the picture, we can see that we scored higher than at least half of all the test-takers.

Using pnorm, we can tell exactly what the area underneath the curve is:

> pnorm(85,mean=78,sd=5)

[1] 0.9192433

80

Want to double check? Calculate the z-score associated with 85 for this particular normal

distribution, head to Wolfram, and ask it to calculate P[z < whatever z score you calculated].

You Don't Need All the Data

In the examples above, we figured out what normal model to use based on the

characteristics of our data set. However, sometimes, you might just be told what the

characteristics of the population are - and asked to figure out what proportion of the

population has values that fall above, below, or between certain outcomes. For example,

let's say we are responsible for buying manufactured parts from one of our suppliers, to use

in assemblies that we sell to our customers. To work in our assembly, each part has to be

within 0.01 inches of the target length of 3.0 inches. If our supplier tells us that the

population of their parts has a mean length of 3.0 inches with a standard deviation of 0.005

inches, what proportion of the parts that we buy can we expect to not be able to use? (This

has implications for how many parts we order, and what price we will negotiate with our

supplier.)

To solve this problem, we need to draw a picture. We know that the length of the parts is

distributed as N(3.0, 0.005). We can't use parts that are shorter than (3.0 - 0.01 = 2.99

inches), nor can we use parts that are longer than (3.0 + 0.01 = 3.01 inches). This picture is

drawn with shadenorm(below=2.99,above=3.01,color="black",mu=3,sig=0.005):

 81

What proportion of the area is contained within these tails, which represent the proportion

of parts we won't be able to use? Because the normal model is symmetric, as long as we can

find the area under the curve inside one of those tails, we can just multiply what we get by

two to get the area in both of the tails together.

Since pnorm always gives us the area to the left of a certain point, let's use it to find out the

area in the left tail. First, let's calculate a z score for x=2.99:

Using the 68-95-99.7 rule, we know the area we're looking for will be about 5% (since 95%

of the area is contained inside z=-2 and z=+2). So let's look up to see what the area is

exactly, multiplying by 2 since we need to include the area in both tails:

> pnorm(-2) * 2

[1] 0.04550026

We can also ask pnorm for the area directly, without having to compute the z score. Notice

how we give pnorm the x value at the boundary of the left tail, since we know pnorm gives

us everything to the left of a particular x value:

> pnorm(2.99,mean=3,sd=0.005) * 2

[1] 0.04550026

All methods agree. Approximately 4.5% of the parts that we order won't be within our

required specifications.

If this was a real problem we were solving for our employer, though, the hard part would be

yet to come: how are we going to use this knowledge? Does it still make sense to buy our

parts from this supplier, or would we be better off considering other alternatives? Should

we negotiate a price discount? Solving problems in statistics can be useful, but sometimes

the bigger problem comes after you've done the calculations.

82

Now What?

Here are some useful resources that talk more about the concepts in this chapter:

 My favorite picture of z-scores superimposed on the normal model is here. Print it

out! Carry it with you! It is tremendously valuable.

http://en.wikipedia.org/wiki/Standard_score

 You can find out more about the 68-95-99.7 rule at

http://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule

 Like I said before, I am not a mathematician, so I didn't go into depth about the

math behind the normal pdf or cdf (or values that can be derived from those

equations). If you want to know more, Wolfram has an excellent page that goes into

depth at http://mathworld.wolfram.com/NormalDistribution.html

Notice that in all of the examples from this chapter, we've used our model of a population

to answer questions about the population. But if we're only able to select a small sample of

items from our population (usually less than 30), we aren't going to be able to get a really

good sense of the variability within the population. We will have to adjust our normal model

to account for the fact that we only have limited knowledge of the variability within the

population: and to do that, we use the t distribution.

http://en.wikipedia.org/wiki/Standard_score
http://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule
http://mathworld.wolfram.com/NormalDistribution.html

 83

Appendix K: Overview of Inference Tests

 Type of Data

 Normal or

Nearly Normal

Not Normal Binomial

(Proportions)

Variances

Compare data within

one group to a

standard, target, or

recommended value

One sample t-

test

Wilcoxon

Rank Sum

test

One proportion

z-test (or Exact

Binomial test)

Chi-square

test for one

variance

Compare data within

two groups (where

observations are

unpaired)

Two sample t-

test

Mann-

Whitney U

test

Two proportion

z-test, Chi-square

test of

independence

(or Fisher's Exact

test if counts in

cells < 5)

F Test for

Homogeneity

of Variances

Compare data within

two groups (where

observations are

paired)

Paired t-test Wilcoxon

Rank Sum

test

McNemar's test Bonett's Test

Compare data

between many

groups

One-Way

Analysis of

Variance

(ANOVA)

Kruskal-

Wallis test

Chi-square test

of independence

(or Fisher's Exact

test if counts in

cells < 5)

Levene's Test

(or Bartlett's

if source data

is normal)

84

Index

68-95-99.7 Rule, 64-69

 (Type I Error), 198-199

abline, 130, 209, 294, 388, 432, 450

aggregate, 43-44, 326, 339, 353, 422

Adjusted Wald, see Agresti-Caffo and

 Agresti-Coull corrections

Agresti-Caffo correction, 271, 275-278

Agresti-Coull correction, 262-269, 368

alternative, 201-206, 209, 232, 274-

 275, 313-315

alternative hypothesis

 for ANOVA, 418

 for Chi-square test of

 independence, 385

 for Chi-square test on one

 variance, 399

 for test on difference between

 paired means, 346

 for test on difference between

 two proportions, 372

 for test on difference between

 two variances, 410

 for test on difference between

 unpaired means, 324, 337

 for test on one mean, 308

 for test on one proportion, 357

 for test on one variance, 399

 for test on regression coefficients,

 454

 for test on regression intercept,

 459

 for test on regression slope, 454

analysis of variance

 one-way, 190-191, 208, 301, 415-

 426, 446

 two-way, 415

ANOVA, see analysis of variance

anova, 200, 208, 318, 333, 408, 446-447

ANOVA table, 419-422

aov, 424-425

apply, 215-216, 220-221

area principle, 118

as.numeric(), 46

autocorrelation, 303

average, see mean

 (regression coefficient), 288-291, 443,

 449-461

 (Type II Error), 198-200

bar chart, see bar plot

barplot, 84-90

 segmented, 99-104

 stacked, 99-104

Bessel's correction, 31-33

bias, 170-172

 nonresponse, 171

 response, 171

 selection, 171

 undercoverage, 171

 85

binom.test(), 367

blinding, 176

blocking, 175-176
boxplot

 one variable, 108-111

 comparative, 114-116

Burning Man, 164

c, vii, 16, 25, 28, 293

case format, 21-22

categorical variables, 13, 17

causation, 179

causal relationships, see causation

cbind, 142-144, 274-278, 387

CDF, 55-59

Central Limit Theorem (CLT), 60, 219-222

central tendency, 24, 30

chisq.test, 200, 207, 383, 390

 finding expected values, 386

Chi-square, 155, 193

 goodness of fit, 299

 test of independence, 383

ci.mean (custom function), 39, 244-246

ci.paired (custom function), 259-261

ci.twomeans (custom function), 252-

 255

Clopper-Pearson (Exact) confidence

 interval, 264, 268

coefficient of determination, 435-436

coefficient of variance, 39

comment (#), 35

conditional distribution, 99, 157-158

confidence interval, 224

 for one mean, 242

 for difference between means,

 248

 for difference between paired

 means, 258

 for one proportion, 266

 for difference between two

 proportions, 272

 for one variance, 280

 for ratio of two variances, 284

 for regression, 287

 coefficients, 288

 intercept, 292

 slope, 288

 how to plot on regression, 293

contingency coefficient, 392

contingency tables, 99-101

 with CrossTable, 152

 with table, 151

convenience sample, 169, 172

Cook's distance, 437

cor, 143, 431

correlation, 140, 179

correlation coefficient, 140-143, 150

covariance, 140-143

coverage probability, 263-265, 272

Cramer's V, 393

CRAN, v, 4

Critical t (t*df), 242, 251, 259

Critical z (z*), 243, 266

CrossTable, 152-155, 394

86

cumulative distribution function, 55-59

curve, 209, 388

data acquisition, 34

 from APIs, 51

 from a CSV file, 44

 from a file on GitHub, viii

 from Google forms, 47

 from Google spreadsheets, 47

 from JSON format, 51

 from a text file, 114

 from NCDC archive, 344

 from a URL on the web, 45, 49

data.frame, 42, 45, 50, 100, 126

data frames, 25, 36

degrees of freedom, 250

 numerator, 283, 411

 denominator, 283, 411

density, 55-59

density, 95, 104, 400

descriptive statistics

 with stat.desc, 38-39

 with summary, 36-37

distribution

 binomial, 354, 357, 359, 365

 continuous, 15

 cumulative, 56-57

 discrete, 15

 empirical, 229-231

 exponential, 58

 Gaussian, see normal

 geometric, 58

 hypergeometric, 58

 normal, 55-82

 of the sample, 213-214

 sampling, 213-214

 quantiles, 57-58

 uniform, 58

 weibull, 58

Dr. R's 12 Steps, 181-184

effect size, 197-198

Empirical Rule, 64

erf, 68-69

error, see standard error

error function, 68-69

ethical considerations, 183

ExactCIdiff (package), 271, 278

Excel, 86

experimental design, 180, 198

experimental study, 173-176

expression, 400-401, 449-450

extrapolation, 438-440

F test, 406

 for comparing variances, 323, 336

 in ANOVA table, 419

 in regression analysis, 446-447

factors, 175

Fisher's exact test, 300, 395

frequency, 95

getwd(), ix, 41

Greek letters on plots, 400-401, 449-450

 87

Hawthorne Effect, 176

head, 35, 42-46, 50, 71, 105

header, 86

help function, 476-480

heteroscedasticity, 433, 438

homoscedasticity,451

hist, 94-97, 109, 133

histograms, 91-98

install.packages(), 7, 38, 120, 123,

 476

interquartile range, 107

IQR, 107

kernel density, 95

Kruskal-Wallis test, 418

kruskal.test, 418

LaTeX markup, 487-491

Law of Large Numbers (LLN), 165

least squares, 428-431

legend, 103, 145-147

library, 8, 49, 127, 152, 200

linear regression, 16, 428-432, 442-443

lm, 290, 294, 431-434, 438, 444

logistic regression, 16, 302

margin of error, 241

Mann-Whitney U test, 182, 320

marginal distribution, 156

mean, 16, 25, 46, 141, 215, 245

mean, 24, 36

 arithmetic, 24

 geometric, 25

 harmonic, 25

Mean Squares Between Treatments

 (MSB), 422

Mean Squares of Errors (MSE), 419

median, 25, 36, 38, 105

median, 25

metadata, 18-20

missing data, 44

mode, 26-28

mode (custom function), 26

multiple comparisons, 301, 424-425

multiple regression, 442-446

n, see sample size

NA, see missing data,

names, vii, 28, 85, 103, 120

Newcombe Hybrid Score, 271, 276-278

nonparametric tests, 304

normal distribution, 55-57, 60-80

null hypothesis,

 for ANOVA, 418

 for Chi-square test of

 independence, 385

 for Chi-square test on one

 variance, 399

 for test on difference between

 paired means, 346

 for test on difference between

 two proportions, 372

88

 for test on difference between

 two variances, 410

 for test on difference between

 unpaired means, 324, 337

 for test on one mean, 308

 for test on one proportion, 357

 for test on one variance, 399

 for test on regression coefficients,

 454

 for test on regression intercept,

 459

 for test on regression slope, 454

observational study, 177-180

 prospective, 177

 retrospective, 178

one-tailed test, 224

open science, 235

overfitting, 448

PDF, 55-59

P-Value, 224-225

pairs, 148-149

pairwiseCI, 271, 275-276, 277-278

par (plot area), see plots, mfrow

pareto.chart, 127-129

Pareto charts, 125-131

paste, 50, 120-121, 151, 215-217, 403,

 450

pastecs (package), 38-39

pch, 147-148

pie, 121-122

pie charts, 118-122

plot, 16, 55, 61, 140-141, 145, 147, 230-

 231, 295

plot symbols, 148

plots, 82-150

 abline, 130, 209, 388, 432, 439,

 450

 axis labels, see xlab and ylab

 bounds on x and y axes, see xlim

 and ylim

 Greek letters on, 400-401, 449-

 450

 lines, 95, 209, 294, 484

 main, 16, 55, 61, 87-88, 95-97,

 102

 multiframe layout, see mfrow

 mfrow, 108, 136, 156, 215-216,

 220

 points, 148

 text, 111, 215

 title, 65, 78, 209

 xlab and ylab, 87-90, 95-99,

 102-103, 108-109, 115-

 116, 121, 127, 129, 140

 xlim and ylim, 97, 109, 321-322,

 336, 388, 439, 450

population, 39, 60-66, 71-76

population parameters, 166

post hoc tests, 418, 424-426

power of a statistical test, 196-197

power analysis, 196-211

prediction interval, 293-296

 89

probability, 165, 492-495

 addition rule, 494-495

 density function, 55-59

 multiplication rule, 494-495

 plot, normal, 71, 132-138

project proposal, 236-237

PropCIs, 267-269, 276-278

prop.test, 262-278

Q1, 106-107, 464

Q3, 106-107, 464

QQ plot, 71, 132-138

qchisq, 281, 402

qnorm, 57, 470, 471, 484

qqline, 72, 134, 136, 346

qqnorm, 72, 134, 136, 346

quality, 396

quantile, 132

quartile, 105-107, 465

r, 140

R2, 431, 435-436

 adjusted, 436

 multiple, 436

R Bloggers, 8, 117, 353, 441, 484

Radziwill's 12 Steps, 181-184

randomness, 162-165

random sampling

 cluster, 169

 simple, 168

 stratified, 169

 systematic, 168

RColorBrewer, 481

RCurl, 41, 48-49, 71

read.csv, x, 35, 41-45, 50, 71, 86, 100,

 120, 134, 151, 353

read.table, 114, 133-134, 143, 289,

 333, 408, 420

recoding variables, 17-18

regression analysis, 287-296, 427-462

 comparing two models, 446-448

 diagnostic plots, 436-437

 linear, 428-441

 logistic, 16, 302

 neural network, 302

 multiple linear, 442-448

relative frequency, 90, 165, 492

replicability, 20, 23, 235

replications, 222

reproducibility, 20, 23, 235

research questions, 182, 185-195

residuals, 425, 428-433

rjson, 51

rnorm, 57-58, 96-98, 105, 136, 221

runif, 27

sample, 28

 random, 162-165

 representative, 167-168

 size, calculation of, 196-211

 statistics, 166

sampling, see random sample

sampling distribution model, 213-214

 of one mean, 241

90

 of difference between two

 means, 248

 of difference between two paired

 means, 258

 of difference between two

 proportions, 272

 of one proportion, 266

 of regression slope, 288

 of ratio between two variances,

 283

 of one variance, 279

 simulation of, 221-222

sampling error, 198, 212-213, 224-229

scale, 70

scatterplot, 139, 145-148

scatterplot matrix, 148-149

sd, 31, 37, 72, 93, 143, 255, 431

sdm.sim (custom function), 221

setwd(), 5, 35, 41, 86, 100, 114

shadenorm, 310, 327, 348, 353, 359, 374,

 457, 484-486

shapiro.test, 136

simulation, 222-223, 228-234

skip, 35

slope, 56, 230, 287-291, 428-429

sort, 27

source, ix, 64, 484

split, see textConnection

sprintf, 244, 253, 260, 403

standard error

 of one mean, 241-242

 of difference between two paired

 means, 258

 of difference between two

 means, 247-250

 of regression intercept, 292

 of regression slope, 288

 of one proportion, 266

 of one variance, 279

 of two proportions, 272

standard deviation, 24, 31-33

str, 43, 45, 477

Sum of Squares Between Treatments

 (SSB), 419, 421

Sum of Squares of Errors (SSE), see Sum of

 Squares Within (SSW)

Sum of Squares Total (SST), 420-422

Sum of Squares Within (SSW), 419-422

summary, 109

 of aov object, 425

 of data frame, 36, 93, 105

 of lm object, 434

 of vector, 233

t.test, 240-261

t test, 300-301

 one sample, 305-316

 two samples

 equal variance, 317-331

 unequal variance, 332-

 342

 paired, 343-353

table, 27, 88

time travel, 18, 20

title, 65, 78, 209

 91

tolerance interval, 296

transforming data, 335

troubleshooting, viii, 476-480

TukeyHSD, 425

Tukey's HSD (honestly significant

 difference), 425

Type I and Type II Error, 198-199

var, 31, 39

var.test, 323, 413-414

variables

 categorical, 12-14, 467

 dependent, 16

 independent, 16

 nominal, 13, 30, 304

 interval, 14, 30

 ordinal, 13, 30, 299-300, 304

 predictor, 428, 442, 449

 ratio, 14, 30

 recoding, 17-18

 response, 428, 442

 quantitative, 13-14, 17-18

variance, 24, 30-31

variation, 449

 explained by model, 431

vector, 85

verbose, 244-246, 403-404

waffle, 123-124

waffle charts, 118, 123-124

wald2ci, 276-278

Wald confidence interval, 265-266, 271-

 276, 360-362, 368

Wilson score interval, 262-265, 366-368,

 381-382

Wolfram Alpha, 68-69, 76-78, 82

XKCD, 235

2, 471-472

 test of independence, 383-395

 test of one variance, 396-405

Yates continuity correction, 365, 379-380

z*, 242-243, 466-468, 471

z score, 62, 70-82

z score table, 75

z.test (custom function), 362-364

z2.test (custom function), 377-379

Zener cards, 267, 254, 369

