Tag Archives: productivity

Happy World Quality Day 2018!

Each year, the second Thursday of November day is set aside to reflect on the way quality management can contribute to our work and our lives. Led by the Chartered Quality Institute (CQI) in the United Kingdom, World Quality Day provides a forum to reflect on how we implement more effective processes and systems that positively impact KPIs and business results — and celebrate outcomes and new insights.

This year’s theme is “Quality: A Question of Trust”.

We usually think of quality as an operations function. The quality system (whether we have quality management software implemented or not) helps us keep track of the health and effectiveness of our manufacturing, production, or service processes. Often, we do this to obtain ISO 9001:2015 certification, or achieve outcomes that are essential to how the public perceives us, like reducing scrap, rework, and customer complaints.

But the quality system encompasses all the ways we organize our business — ensuring that people, processes, software, and machines are aligned to meet strategic and operational goals. For example, QMS validation (which is a critical for quality management in the pharmaceutical industry), helps ensure that production equipment is continuously qualified to meet performance standards, and trust is not broken. Intelex partner Glemser Technologies explains in more detail in The Definitive Guide to Validating Your QMS in the Cloud. This extends to managing supplier relationships — building trust to cultivate rich partnerships in the business ecosystem out of agreements to work together.

This also extends to building and cultivating trust-based relationships with our colleagues, partners, and customers…

Read more about how Integrated Management Systems and Industry 4.0/ Quality 4.0 are part of this dynamic: https://community.intelex.com/explore/posts/world-quality-day-2018-question-trust

Value Propositions for Quality 4.0

In previous articles, we introduced Quality 4.0, the pursuit of performance excellence as an integral part of an organization’s digital transformation. It’s one aspect of Industry 4.0 transformation towards intelligent automation: smart, hyperconnected(*) agents deployed in environments where humans and machines cooperate and leverage data to achieve shared goals.

Automation is a spectrum: an operator can specify a process that a computer or intelligent agent executes, the computer can make decisions for an operator to approve or adjust, or the computer can make and execute all decisions. Similarly, machine intelligence is a spectrum: an algorithm can provide advice, take action with approvals or adjustments, or take action on its own. We have to decide what value is generated when we introduce various degrees of intelligence and automation in our organizations.

How can Quality 4.0 help your organization? How can you improve the performance of your people, projects, products, and entire organizations by implementing technologies like artificial intelligence, machine learning, robotic process automation, and blockchain?

A value proposition is a statement that explains what benefits a product or activity will deliver. Quality 4.0 initiatives have these kinds of value propositions:

  1. Augment (or improve upon) human intelligence
  2. Increase the speed and quality of decision-making
  3. Improve transparency, traceability, and auditability
  4. Anticipate changes, reveal biases, and adapt to new circumstances and knowledge
  5. Evolve relationships and organizational boundaries to reveal opportunities for continuous improvement and new business models
  6. Learn how to learn; cultivate self-awareness and other-awareness as a skill

Quality 4.0 initiatives add intelligence to monitoring and managing operations – for example, predictive maintenance can help you anticipate equipment failures and proactively reduce downtime. They can help you assess supply chain risk on an ongoing basis, or help you decide whether to take corrective action. They can also improve help you improve cybersecurity: documenting and benchmarking processes can provide a basis for detecting anomalies, and understanding expected performance can help you detect potential attacks.


(*) Hyperconnected = (nearly) always on, (nearly) always accessible.

Writing a Great Article Review

We’re teaching a class on blockchain and cryptocurrencies this semester, and since the field is so new and changing rapidly, we’ve asked our students to make finding and reviewing articles part of their learning practice this semester. This is a particularly challenging topic for this task because there’s so much hype, marketing, and fluff around these topics. We want to slice through that, and improve the signal-to-noise for people new to learning about blockchain and cryptocurrencies. Here are some tips I just prepared for our students — they may be helpful to anyone writing article reviews, especially for technology-related areas.


0 – Type of Source. Reviews or articles from from arXiv, Google Scholar were strong; reviews from Coindesk, CNN were weak; reviews from WSJ and Hacker Noon went both ways. Here are two submissions that were publishable with only minor edits:

1 – Spelling & Grammar. Most of you are college seniors, and the few who aren’t… are juniors. Please use complete sentences that make sense, with words that are spelled correctly! If this is hard for you, remember that every one of you has spell check. One way to remember this is to draft your posts in Word, and then perform spell check before you copy and paste what you wrote into WordPress.

1 – Your job is to create the TL;DR. What’s the essential substance of the source you’re reviewing? What are the main lessons or findings? If you were taking notes for an exam, what elements would you capture? (Using this perspective, commentary about how good or bad you think the article was, or what it didn’t cover well, would not help you on an exam.)

2 – Choose solid source material — primary sources, e.g. research papers, if possible. If the article is less than ~400-500 words, it’s probably not detailed enough to write a 250-300 word summary/analysis. Your job in this class is to break down complex topics & help people understand them. If your article is short and already very easy to understand, there’s nothing for you to do.

3 – Avoid “weasel words” (phrases or sentences that sound like marketing or clickbait but actually say nothing) and words/sentences that sound like you’re writing a Yelp or Amazon review rather than a critical academic review. Here are a couple weaselly examples drawn from this week’s draft posts (see if you can spot what’s wrong):

  • It is clear how beneficial blockchain can be to smaller businesses.
  • Blockchain has the potential to change the world.
  • Each other the topics covered in the article deserve their own piece and could be augmented upon greatly.
  • There is a degree of uncertainty that comes with an emerging technology.
  • Blockchain can bring them into the 21st century to compete with larger corporations.
  • Many people are scared of the changes, and governments will seek to regulate it.

4 – Answer the “so what” question. Why is this topic interesting or compelling?

5 – Choose information-rich tags. For example, in our class, don’t include blockchain as a tag… pretty much everything we do will be related to blockchain, and everyone will tend to use it, so there won’t be much information contained in the tag.

The Value of Defining Context

Image Credit: Doug Buckley of http://hyperactive.to

Image Credit: Doug Buckley of http://hyperactive.to

The most important stage of problem-solving in organizations is often one of the earliest: getting everyone on the same page by defining the concepts, processes, and desired outcomes that are central to understanding the problem and formulating a solution. (“Everyone” can be the individuals on a project team, or the individuals that contribute actions to a process, or both.) Too often, we assume that the others around us see and experience the world the same way we do. In many cases, our assessments are not too far apart, which is how most people can get away with making this assumption on a regular basis.

In fact, some people experience things so differently that they don’t even “picture” anything in their minds. Can you believe it?

I first realized this divergence in the work context a few years ago, when a colleague and I were advising a project at a local social services office. We asked our students to document the process that was being used to process claims. There were nearly ten people who were part of this claims-processing activity, and our students interviewed all of them, discovering that each person had a remarkably different idea about the process that they were all engaged in! No wonder the claims processing time was nearly two months long.

We helped them all — literally — get onto the same page, and once they all had the same mental map of the process, time-in-system for each claim dropped to 10 days. (This led us to the quantum-esque conclusion that there is no process until it is observed.)

Today, I read about how mathematician Keith Devlin revolutionized the process of intelligence gathering after 9/11 using this same approach… by going back to one of the first principles he learned in his academic training:

So what had I done? Nothing really — from my perspective. My task was to find a way of analyzing how context influences data analysis and reasoning in highly complex domains involving military, political, and social contexts. I took the oh-so-obvious (to me) first step. I need to write down as precise a mathematical definition as possible of what a context is. It took me a couple of days…I can’t say I was totally satisfied with it…but it was the best I could do, and it did at least give me a firm base on which to start to develop some rudimentary mathematical ideas.

The fairly large group of really smart academics, defense contractors, and senior DoD personnel spent the entire hour of my allotted time discussing that one definition. The discussion brought out that all the different experts had a different conception of what a context is — a recipe for disaster.

What I had given them was, first, I asked the question “What is a context?” Since each person in the room besides me had a good working concept of context — different ones, as I just noted — they never thought to write down a formal definition. It was not part of what they did. And second, by presenting them with a formal definition, I gave them a common reference point from which they could compare and contrast their own notions. There we had the beginnings of disaster avoidance.

Getting people to very precisely understand the definitions, concepts, processes, and desired outcomes that are central to a problem might take some time and effort, but it is always extremely valuable.

When you face a situation like this in mathematics, you spend a lot of time going back to the basics. You ask questions like, “What do these words mean in this context?” and, “What obvious attempts have already been ruled out, and why?” More deeply, you’d ask, “Why are these particular open questions important?” and, “Where do they see this line of inquiry leading?”

(You can read the full article about Devlin, and more important lessons from mathematical thinking, Here.)

View story at Medium.com

Innovation Tips for Strategic Planning

Image Credit: Doug Buckley of http://hyperactive.to

Image Credit: Doug Buckley of http://hyperactive.to

Over the past 15 years, I’ve helped several organizations with continuous improvement initiatives at the strategic, executive level. There are a lot of themes that keep appearing and reappearing, so the purpose of this post is to call out just a few and provide some insights in how to deal with them! 

These come up when you are engaged in strategic planning and when you are planning operations (to ensure that processes and procedures ultimately satisfy strategic goals), and are especially prominent when you’re trying to develop or use Key Performance Indicators (KPIs) and other metrics or analytics.

 

1) How do you measure innovation? Before you pick metrics, recognize that the answer to this question depends on how you articulate the strategic goals for your innovation outcomes. Do you want to:

  • Keep up with changing technology?
  • Develop a new product/technology?
  • Lead your industry in developing best practices?
  • Pioneer new business models?
  • Improve quality of life for a particular group of people?

All of these will be measured in different ways! And it’s OK to not strategically innovate in one area or another… for example, you might not want to innovate your business model if technology development is your forte. Innovation is one of those things where you really don’t want to be everything to everyone… by design.

 

2) Do you distinguish between improving productivity and generating impact?

Improving quality (the ability to satisfy stated and implied needs) is good. Improving productivity (that is, what you can produce given the resources that you use) is also good. Reducing defects, reducing waste, and reducing variation (sometimes) are all very good things to do, and to report on. 

But who really cares about any improvements at all unless they have impact? It’s always necessary to tie your KPIs, which are often measures of outcomes, to metrics or analytics that can tell the story about why a particular improvement was useful — in the short term, and (hopefully also) in the long term.

You also have to balance productivity and impact. For example, maybe you run an ultra-efficient 24/7 Help Desk. Your effectiveness is exemplary… when someone submits a request, it’s always satisfied within 8 hours. But you discover that no tickets come in between Friday at 5pm and Monday at 8am. So all that time you spend staffing that Help Desk on the weekend? It’s non-value-added time, and could be eliminated to improve your productivity… but won’t influence your impact at all.

We just worked on a project where we had to consciously had to think about how all the following interact… and you should too:

  • Organizational Productivity: did your improvement help increase the capacity or capability for part of your organization? If so, then it could contribute to technical productivity or business productivity.
  • Technical Productivity: did the improvement remove a technical barrier to getting work done, or make it faster or less error-prone?
  • Business Productivity: did the improvement help you get the needs of the business satisfied faster or better?
  • Business Impact: Did the improvements that yielded organizational productivity benefits, technical productivity benefits, or business productivity benefits make a difference at the strategic level? (This answers the “so what” question. So you improved your throughput by 83%… so what? Who really cares, and why does this matter to them? Long-term, why does this awesome thing you did really matter?)
  • Educational/Workforce Development Impact: Were the lessons learned captured, fed back into the organization’s processes to close the loop on learning, or maybe even used to educate people who may become part of your workforce pipeline?

All of the categories above are interrelated. I don’t think you can have a comprehensive, innovation-focused analytics approach unless you address all of these.

 

3) Do you distinguish between participation and engagement?

Participation means you showed up. Engagement means you got involved, you stayed involved, your mission was advanced, or maybe you used this experience to help society. Too often, I see organizations that want to improve engagement, and all the metrics they select are really good at characterizing participation.

I’m writing a paper on this topic right now, but in the meantime (if you want to get a REALLY good sense of the difference between participation and engagement), read The Participatory Museum by Nina Simon. Yes, it is “about museums” — and yes, I know you’re in business or industry — and YES, this book really will provide you with amazing management insights. So read it!

Where is Quality Management Headed?

Image Credit: Doug Buckley of http://hyperactive.to

Image Credit: Doug Buckley of http://hyperactive.to

[This post is in response to ASQ’s February topic for the Influential Voices group, which asks: Where do you plan to take your career in 2016? What’s your view of careers in quality today—what challenges is this field facing? How can someone starting out in quality succeed?]

We are about to experience a paradigm shift in production, operations, and service: a shift that will have direct consequences on the principles and practice of design, development, and quality management. This “fourth industrial revolution” of cyber-physical systems will require more people in the workforce to understand quality principles associated with co-creation of value, and to develop novel business models. New technical skills will become critical for a greater segment of workers, including embedded software, artificial intelligence, data science, analytics, Big Data (and data quality), and even systems integration. 

Over the past 20 years, we moved many aspects of our work and our lives online. And in the next 20 years, the boundaries between the physical world and the online world will blur — to a point where the distinction may become unnecessary.

Here is a vignette to illustrate the kinds of changes we can anticipate. Imagine the next generation FitBit, the personalized exercise assistant that keeps track of the number of steps you walk each day. As early as 2020, this device will not only automatically track your exercise patterns, but will also automatically integrate that information with your personal health records. Because diet strategies have recently been shown to be predominantly unfounded, and now researchers like Kevin Hall, Eran Elinav, and Eran Siegal know that the only truly effective diets are the ones that are customized to your body’s nutritional preferences [1], your FitBit and your health records will be able to talk to your food manager application to design the perfect diet for you (given your targets and objectives). Furthermore, to make it easy for you, your applications will also autonomously communicate with your refrigerator and pantry (to monitor how much food you have available), your local grocery store, and your calendar app so that food deliveries will show up when and only when you need to be restocked. You’re amazed that you’re spending less on food, less of it is going to waste, and you never have to wonder what you’re going to make for dinner. Your local grocery store is also greatly rewarded, not only for your loyalty, but because it can anticipate the demand from you and everyone else in your community – and create specials, promotions, and service strategies that are targeted to your needs (rather than just what the store guesses you need).

Although parts of this example may seem futuristic, the technologies are already in place. What is missing is our ability to link the technologies together using development processes that are effective and efficient – and in particular, coordinating and engaging the people  who will help make it happen. This is a job for quality managers and others who study production and operations management

As the Internet of Things (IoT) and pervasive information become commonplace, the fundamental nature and character of how quality management principles are applied in practice will be forced to change. As Eric Schmidt, former Chairman of Google, explains:  “the new age of artificial intelligence is beginning, and it’s a big deal.” [2] Here are some ways that this shift will impact researchers and practitioners interested in quality:

  • Strategic deployment of IoT technologies will help us simultaneously improve our use of enterprise assets, reduce waste, promote sustainability, and coordinate people and machines to more effectively meet strategic goals and operational targets.
  • Smart materials, embedded in our production and service ecosystems, will change our views of objects from inert and passive to embedded and engaged. For example, MIT has developed a “smart band-aid” that communicates with a wound, provides visual indicators of the healing process, and delivers medication as needed. [3] Software developers will need to know how to make this communication seamless and reliable in a variety of operations contexts.
  • Our technologies will be able to proactively anticipate the Voice of the Customer, enabling us to meet not only their stated and implied needs, but also their emergent needs and hard-to-express desires. Similarly, will the nature of customer satisfaction change as IoT becomes more pervasive?
  • Cloud and IoT-driven Analytics will make more information available for powerful decision-making (e.g. real-time weather analytics), but comes with its own set of challenges: how to find the data, how to assess data quality, and how to select and store data with likely future value to decision makers. This will be particularly challenging since analytics has not been a historical focus among quality managers. [4]
  • Smart, demand-driven supply chains (and supply networks) will leverage Big Data, and engage in automated planning, automatic adjustment to changing conditions or supply chain disruptions like war or extreme weather events, and self-regulation.
  • Smart manufacturing systems will implement real time communication between people, machines, materials, factories and warehouses, supply chain partners, and logistics partners using cloud computing. Production systems will adapt to demand as well as environmental factors, like the availability of resources and components. Sustainability will be a required core capability of all organizations that produce goods.
  • Cognitive manufacturing will implement manufacturing and service systems capable of perception, judgment, and improving quality autonomously – without the delays associated with human decision-making or the detection of issues.
  • Cybersecurity will be recognized as a critical component of all of the above. For most (if not all) of these next generation products and production systems, quality will not be possible without addressing information security.
  • The nature of quality assurance will also change, since products will continue to learn (and not necessarily meet their own quality requirements) after purchase or acquisition, until the consumer has used them for a while. In a December 2015 article I wrote for Software Quality Professional, I ask “How long is the learning process for this technology, and have [product engineers] designed test cases to accommodate that process after the product has been released? The testing process cannot find closure until the end of the ‘burn-in’ period when systems have fully learned about their surroundings.” [5]
  • We will need new theories for software quality practice in an era where embedded artificial intelligence and technological panpsychism (autonomous objects with awareness, perception, and judgment) are the norm.

How do we design quality into a broad, adaptive, dynamically evolving ecosystem of people, materials, objects, and processes? This is the extraordinarily complex and multifaceted question that we, as a community of academics and practitioners, must together address.

Just starting out in quality? My advice is to get a technical degree (science, math, or engineering) which will provide you with a solid foundation for understanding the new modes of production that are on the horizon. Industrial engineering, operations research, industrial design, and mechanical engineering are great fits for someone who wants a career in quality, as are statistics, data science, manufacturing engineering, and telecommunications. Cybersecurity and intelligence will become increasingly more central to quality management, so these are also good directions to take. Or, consider applying for an interdisciplinary program like JMU’s Integrated Science and Technology where I teach. We’re developing a new 21-credit sector right now where you can study EVERYTHING in the list above! Also, certifications are a plus, but in addition to completing training programs be sure to get formally certified by a professional organization to make sure that your credentials are widely recognized (e.g. through ASQ and ATMAE).

 

References

[1] http://www.huffingtonpost.com/entry/no-one-size-fits-all-diet-plan_564d605de4b00b7997f94272
[2] https://www.washingtonpost.com/news/innovations/wp/2015/09/15/what-eric-schmidt-gets-right-and-wrong-about-the-future-of-artificial-intelligence/
[3] http://news.mit.edu/2015/stretchable-hydrogel-electronics-1207
[4] Evans, J. R. (2015). Modern Analytics and the Future of Quality and Performance Excellence. The Quality Management Journal22(4), 6.
[5] Radziwill, N. M., Benton, M. C., Boadu, K., & Perdomo, W., 2015: A Case-Based Look at Integrating Social Context into Software Quality. Software Quality Professional, December.

If Japan Can, Why Can’t We? A Retrospective

if-japan-canJune 24, 1980 is kind of like July 4, 1776 for quality management… that’s the pivotal day that NBC News aired its one hour and 16 minute documentary called “If Japan Can, Why Can’t We?” introducing W. Edwards Deming and his methods to the American public. The video has been unavailable for years, but as of just last week, it’s been posted on YouTube. So my sophomore undergrads in Production & Operations Management took a step back in time to get a taste of the environment in the manufacturing industry in the late 1970’s, and watched it during class this week.

The last time I watched it was in 1997, in a graduate industrial engineering class. It didn’t feel quite as dated as it does now, nor did I have the extensive experience in industry as a lens to view the interviews through. But what did surprise me is that the core of the challenges they were facing aren’t that much different than the ones we face today — and the groundbreaking good advice from Deming is still good advice today.

  • Before 1980, it was common practice to produce a whole bunch of stuff and then check and see which ones were bad, and throw them out. The video provides a clear and consistent story around the need to design quality in to products and processes, which then reduces (or eliminates) the need to inspect bad quality out.
  • It was also common to tamper with a process that was just exhibiting random variation. As one of the line workers in the documentary said, “We didn’t know. If we felt like there might be a problem with the process, we would just go fix it.” Deming’s applications of Shewhart’s methods made it clear that there is no need to tamper with a process that’s exhibiting only random variation.
  • Both workers and managers seemed frustrated with the sheer volume of regulations they had to address, and noted that it served to increase costs, decrease the rate of innovation, and disproportionately hurt small businesses. They noted that there was a great need for government and industry to partner to resolve these issues, and that Japan was a model for making these interactions successful.
  • Narrator Lloyd Dobyns remarked that “the Japanese operate by consensus… we, by competition.” He made the point that one reason Japanese industrial reforms were so powerful and positive was that their culture naturally supported working together towards shared goals. He cautioned managers that they couldn’t just drop in statistical quality control and expect a rosy outcome: improving quality is a cultural commitment, and the methods are not as useful in the absence of buy-in and engagement.

The video also sheds light on ASQ’s November question to the Influential Voices, which is: “What’s the key to talking quality with the C-Suite?” Typical responses include: think at the strategic level; create compelling arguments using the language of money; learn the art of storytelling and connect your case with what it important to the executives.

But I think the answer is much more subtle. In the 1980 video, workers comment on how amazed their managers were when Deming proclaimed that management was responsible for improving productivity. How could that be??!? Many managers at that time were convinced that if a productivity problem existed, it was because the workers didn’t work fast enough, or with enough skill — or maybe they had attitude problems! Certainly not because the managers were not managing well. Implementing simple techniques like improving training programs and establishing quality circles (which demonstrated values like increased transparency, considering all ideas, putting executives on the factory floor so they could learn and appreciate the work being done, increasing worker participation and engagement, encouraging work/life balance, and treating workers with respect and integrity) were already demonstrating benefits in some U.S. companies. But surprisingly, these simple techniques were not widespread, and not common sense.

Just like Deming advocated, quality belongs to everyone. You can’t go to a CEO and suggest that there are quality issues that he or she does not care about. More likely, the CEO believes that he or she is paying a lot of attention to quality. They won’t like it if you accuse them of not caring, or not having the technical background to improve quality. The C-Suite is in a powerful position where they can, through policies and governance, influence not only the actions and operating procedures of the system, but also its values and core competencies — through business model selection and implementation. 

What you can do, as a quality professional, is acknowledge and affirm their commitment to quality. Communicate quickly, clearly, and concisely when you do. Executives have to find the quickest ways to decompose and understand complex problems in rapidly changing external environments, and then make decisions that affect thousands (and sometimes, millions!) of people. Find examples and stories from other organizations who have created huge ripples of impact using quality tools and technologies, and relate them concretely to your company.

Let the C-Suite know that you can help them leverage their organization’s talent to achieve their goals, then continually build their trust.

The key to talking quality with the C-suite is empathy.

 

You may also be interested in “Are Deming’s 14 Points Still Valid?” from Nov 19, 2012.

« Older Entries