Tag Archives: Internet of Things

The Connected, Intelligent, Automated Industry 4.0 Supply Chain

ASQ’s March Influential Voices Roundtable asks this question: “Investopedia defines end-to-end supply chain (or ‘digital supply chain’) as a process that refers to the practice of including and analyzing each and every point in a company’s supply chain – from sourcing and ordering raw materials to the point where the good reaches the end consumer. Implementing this practice can increase process speed, reduce waste, and decrease costs.

In your experience, what are some best practices for planning and implementing this style of supply chain to ensure success?

Supply chains are the lifeblood of any business, impacting everything from the quality, delivery, and costs of a business’s products and services to customer service and satisfaction to ultimately profitability and return on assets.

Stank, T., Scott, S. & Hazen, B. (2018, April). A SAVVY GUIDE TO THE DIGITAL SUPPLY CHAIN: HOW TO EVALUATE AND LEVERAGE TECHNOLOGY TO BUILD A SUPPLY CHAIN FOR THE DIGITAL AGE. Whitepaper, Haslam School of Business, University of Tennessee.

Industry 4.0 enabling technologies like affordable sensors, more ubiquitous internet connectivity and 5G networks, and reliable software packages for developing intelligent systems have started fueling a profound digital transformation of supply chains. Although the transformation will be a gradual evolution, spanning years (and perhaps decades), the changes will reduce or eliminate key pain points:

  • Connected: Lack of visibility keeps 84% of Chief Supply Chain Officers up at night. More sources of data and enhanced connectedness to information will alleviate this issue.
  • Intelligent: 87% of Chief Supply Chain Officers say that managing supply chain disruptions proactively is a huge challenge. Intelligent algorithms and prescriptive analytics can make this more actionable.
  • Automated: 80% of all data that could enable supply chain visibility and traceability is “dark” or siloed. Automated discovery, aggregation, and processing will ensure that knowledge can be formed from data and information.

Since the transformation is just getting started, best practices are few and far between — but recommendations do exist. Stank et al. (2018) created a digital supply chain maturity rubric, with highest levels that reflect what they consider recommended practices. I like these suggestions because they span technical systems and management systems:

  • Gather structured and unstructured data from customers, suppliers, and the market using sensors and crowdsourcing (presumably including social media)
  • Use AI & ML to “enable descriptive, predictive, and prescriptive insights simultaneously” and support continuous learning
  • Digitize all systems that touch the supply chain: strategy, planning, sourcing, manufacturing, distribution, collaboration, and customer service
  • Add value by improving efficiency, visibility, security, trust, authenticity, accessibility, customization, customer satisfaction, and financial performance
  • Use just-in-time training to build new capabilities for developing the smart supply chain

One drawback of these suggestions is that they provide general (rather than targeted) guidance.

A second recommendation is to plan initiatives that align with your level of digital supply chain maturity. Soosay & Kannusamy (2018) studied 360 firms in the Australian food industry and found four different stages. They are:

  • Stage 1 – Computerization and connectivity. Sharing data across they supply chain ecosystem requires that it be stored in locations that are accessible by partners. Cloud-based systems are one option. Make sure authentication and verification are carefully implemented.
  • Stage 2 – Visibility and transparency. Adding new sensors and making that data accessible provides new visibility into the supply chain. Key enabling technologies include GPS, time-temperature integrators and data loggers.
  • Stage 3 – Predictive capability. Access to real-time data from supply chain partners will increase the reliability and resilience of the entire network. Enterprise Resource Planning (ERP), Manufacturing Execution Systems (MES), and radio frequency (RFID) tagging are enablers at this stage.
  • Stage 4 – Adaptability and self-learning. At this stage, partners plan and execute the supply chain collaboratively. Through Vendor Managed Inventory (VMI), responsibility for replenishment can even be directly assumed by the supplier.

Traceability is also gaining prominence as a key issue, and permissioned blockchains provide one way to make this happen with sensor data and transaction data. Recently, the IBM Food Trust has demonstrated the practical value provided by the Hyperledger blockchain infrastructure for this purpose. Their prototypes have helped to identify supply chain bottlenecks that might not otherwise have been detected.

What should you do in your organization? Any way to enhance information sharing between members of the supply chain ecosystem — or more effectively synthesize and interpret it — should help your organization shift towards the end-to-end vision. Look for opportunities in both categories.


References for Connected, Intelligent, Automated stats:
  1. IBM. (2018, February). Global Chief Supply Chain Officer Study. Available from this URL
  2. Geriant, J. (2015, October). The Changing Face of Supply Chain Risk Management. SCM World.
  3. IBM & IDC. (2017, March). The Thinking Supply Chain. Available from this URL

What is Quality 4.0?

My first post of the year addresses an idea that’s just starting to gain traction – one you’ll hear a lot more about from me in 2018 and beyond: Quality 4.0.  It’s not a fad or trend, but a reminder that the business environment is changing, and that performance excellence in the future will depend on how well you adapt, change, and transform in response.

Although we started building community around this concept at the ASQ Quality 4.0 Summits on Disruption, Innovation, and Change in 2017 and 2018, the truly revolutionary work is yet to come.

What is Quality 4.0?

Quality 4.0 = Connectedness + Intelligence + Automation (C-I-A)

for Performance Innovation

The term “Quality 4.0” comes from “Industry 4.0” – the “fourth industrial revolution” originally addressed at the Hannover (Germany) Fair in 2011. That meeting emphasized the increasing intelligence and interconnectedness in “smart” manufacturing systems, and reflected on the newest technological innovations in historical context.

The Industrial Revolutions

  • In the first industrial revolution (late 1700’s), steam and water power made it possible for production facilities to scale up and expanded the potential locations for production.
  • By the late 1800’s, the discovery of electricity and development of associated infrastructure enabled the development of machines for mass production. In the US, the expansion of railways made it easier to obtain supplies and deliver finished goods. The availability of power also sparked a renaissance in computing, and digital computing emerged from its analog ancestor.
  • The third industrial revolution came at the end of the 1960’s, with the invention of the Programmable Logic Controller (PLC). This made it possible to automate processes like filling and reloading tanks, turning engines on and off, and controlling sequences of events based on changing conditions.

The Fourth Industrial Revolution

Although the growth and expansion of the internet accelerated innovation in the late 1990’s and 2000’s, we are just now poised for another industrial revolution. What’s changing?

  • Production & Availability of Information: More information is available because people and devices are producing it at greater rates than ever before. Falling costs of enabling technologies like sensors and actuators are catalyzing innovation in these areas.
  • Connectivity: In many cases, and from many locations, that information is instantly accessible over the internet. Improved network infrastructure is expanding the extent of connectivity, making it more widely available and more robust. (And unlike the 80’s and 90’s, there are far fewer communications protocols that are commonly encountered so it’s a lot easier to get one device to talk to another device on your network.)
  • Intelligent Processing: Affordable computing capabilities (and computing power!) are available to process that information so it can be incorporated into decision making. High-performance software libraries for advanced processing and visualization of data are easy to find, and easy to use. (In the past, we had to write our own… now we can use open-source solutions that are battle tested.
  • New Modes of Interaction: The way in which we can acquire and interact with information are also changing, in particular through new interfaces like Augmented Reality (AR) and Virtual Reality (VR), which expand possibilities for training and navigating a hybrid physical-digital environment with greater ease.
  • New Modes of Production: 3D printing, nanotechnology, and gene editing (CRISPR) are poised to change the nature and means of production in several industries. Technologies for enhancing human performance (e.g. exoskeletons, brain-computer interfaces, and even autonomous vehicles) will also open up new mechanisms for innovation in production. (Roco & Bainbridge (2002) describe many of these, and their prescience is remarkable.) New technologies like blockchain have the potential to change the nature of production as well, by challenging ingrained perceptions of trust, control, consensus, and value.

The fourth industrial revolution is one of intelligence: smart, hyperconnected cyber-physical systems that help humans and machines cooperate to achieved shared goals, and use data to generate value.

Enabling Technologies are Physical, Digital, and Biological

These enabling technologies include:

  • Information (Generate & Share)
    • Affordable Sensors and Actuators
    • Big Data infrastructure (e.g. MapReduce, Hadoop, NoSQL databases)
  • Connectivity
    • 5G Networks
    • IPv6 Addresses (which expand the number of devices that can be put online)
    • Internet of Things (IoT)
    • Cloud Computing
  • Processing
    • Predictive Analytics
    • Artificial Intelligence
    • Machine Learning (incl. Deep Learning)
    • Data Science
  • Interaction
    • Augmented Reality (AR)
    • Mixed Reality (MR)
    • Virtual Reality (VR)
    • Diminished Reality (DR)
  • Construction
    • 3D Printing
    • Additive Manufacturing
    • Smart Materials
    • Nanotechnology
    • Gene Editing
    • Automated (Software) Code Generation
    • Robotic Process Automation (RPA)
    • Blockchain

Today’s quality profession was born during the middle of the second industrial revolution, when methods were needed to ensure that assembly lines ran smoothly – that they produced artifacts to specifications, that the workers knew how to engage in the process, and that costs were controlled. As industrial production matured, those methods grew to encompass the design of processes which were built to produce to specifications. In the 1980’s and 1990’s, organizations in the US started to recognize the importance of human capabilities and active engagement in quality as essential, and TQM, Lean, and Six Sigma gained in popularity. 

How will these methods evolve in an adaptive, intelligent environment? The question is largely still open, and that’s the essence of Quality 4.0.

Roco, M. C., & Bainbridge, W. S. (2002). Converging technologies for improving human performance: Integrating from the nanoscale. Journal of nanoparticle research4(4), 281-295. (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.465.7221&rep=rep1&type=pdf)

Voice of the Customer (VOC) in the Internet of Things (IoT)

Image Credit: Doug Buckley of http://hyperactive.to

Image Credit: Doug Buckley of http://hyperactive.to

In February, I speculated about how our notion of “Voice of the Customer” (VoC) might change, since between 2016 and 2020 we are poised to witness the Internet of Things (IoT) as it grows from 6.4 billion to over 20 billion entities. The IoT will require us to re-think fundamental questions about how our interests as customer and stakeholders are represented. In particular,

  • What will the world look (and feel) like when everything you interact with has a “voice”?
  • How will the “Voice of the Customer” be heard when all of that customer’s stuff ALSO has a voice?
  • Will your stuff have “agency” — that is, the right to represent your needs and interests to other products and services?

Companies are also starting to envision how their strategies will morph in response to the new capabilities offered by the IoT. Starbucks CTO Gerri Martin-Flickenger, for example, shares her feelings in GeekWire, 3/24/2016:

“Imagine you’re on a road trip, diving across the country, and you pull into a Starbucks drive-through that you’ve never been to before,” she said at the Starbucks annual shareholder’s meeting Wednesday in Seattle. “We detect you’re a loyal customer and you buy about the same thing every day, at about the same time. So as you pull up to the order screen, we show you your order, and the barista welcomes you by name.”

“Does that sound crazy?” she asked. “No, actually, not really. In the coming months and years you will see us continue to deliver on a basic aspiration: to deliver technology that enhances the human connection.”

IoT to enhance the human connection? Sounds great, right? But hold on… that’s not what she’s talking about. She wants to enhance the feeling of connection between individuals and a companynothing different than cultivating customer loyalty.

Her scenario is actually pretty appealing: I can imagine pulling up to a Starbuck’s drive-through and having everything disappear from the screen except for maybe 2 or 3 choices of things I’ve had before, and 1 or 2 choices for things I might be interested in. The company could actually work with me to help alleviate my sensory overload problems, reducing the stress I experience when presented with a hundred-item menu, and improving my user experience. IoT can help them hear my voice  as a customer, and adapt to my preferences, but it won’t make them genuinely care about me any more than they already do not.

When I first read this article, I thought it would give me insight into a question I’ve had for a while now… but the question is still substantially unanswered: How can IoT facilitate capturing and responding to VoC in a way that really does cultivate human connection? John Hagel and John Seely Brown, in my opinion, are a little closer to the target:

[Examples] highlight a paradox inherent in connected devices and the Internet of Things: although technology aims to weave data streams without human intervention, its deeper value comes from connecting people. By offloading data capture and information transfer to the background, devices and applications can actually improve human relationships. Practitioners can use technology to get technology out of the way—to move data and information flows to the side and enable better human interaction…